Spelling suggestions: "subject:"nucleosides"" "subject:"nucleosides1""
251 |
Allosteric Regulation of Recombination Enzymes <em>E. coli</em> RecA and Human Rad51: A DissertationDe Zutter, Julie Kelley 07 August 2000 (has links)
ATP plays a critical role in the regulation of many enzyme processes. In this work, I have focused on the ATP mediated regulation of the recombination processes catalyzed by the E. coliRecA and the human Rad51 proteins. The RecA protein is a multifunctional enzyme, which plays a central role in the processes of recombinational DNA repair, homologous genetic recombination and in the activation of the cellular SOS response to DNA damage. Each of these functions requires a common activating step, which is the formation of a RecA-ATP-ssDNA nucleoprotein filament. The binding of ATP results in the induction of a cooperative, high affinity ssDNA binding state within RecA (Menetski & Kowalczykowski, 1985b; Silver & Fersht, 1982). Data presented here identifies Gln194 as the NTP binding site "γ-phosphate sensor", in that mutations introduced at this residue disrupt all ATP induced RecA activities, while basal enzyme function is maintained. Additionally, we have dissected the parameters contributing to cooperative nucleoprotein filament assembly in the presence of cofactor. We show that the dramatic increase in the affinity of RecA for ssDNA in the presence of ATP is a result of a significant increase in the cooperative nature of filament assembly and not an increase in the intrinsic affinity of a RecA monomer for ssDNA.
Previous work using both mutagenesis and engineered disulfides to study the subunit interface of the RecA protein has demonstrated the importance of Phe217 for the maintenance of both the structural and functional properties of the protein (Skiba & Knight, 1994; Logan et al., 1997; Skiba et al., 1999). A Phe217Tyr mutation results in a striking increase in cooperative filament assembly. In this work, we identify Phe217 as a key residue within the subunit interface and clearly show that Phe217 is required for the transmission of ATP mediated allosteric information throughout the RecA nucleoprotein filament.
The human Rad51 (hRad51) protein, like its bacterial homolog RecA, catalyzes genetic recombination between homologous single and double stranded DNA substrates. This suggests that the overall process of homologous recombination may be conserved from bacteria to humans. Using IAsys biosensor technology, we examined the effect of ATP on the binding of hRad51 to ssDNA. Unlike RecA, we show that hRad51 binds cooperatively and with high affinity to ssDNA both in the presence and absence of nucleotide cofactor. These results show that ATP plays a fundamentally different role in hRad51 vs.RecA mediated processes.
In summary, through the work presented in this dissertation, we have defined the critical molecular determinants for ATP mediated allosteric regulation within RecA. Furthermore, we have shown that ATP is not utilized by Rad51 in the same manner as shown for RecA, clearly defining a profound mechanistic difference between the two proteins. Future studies will define the requirement for ATP in hRad51 mediated processes.
|
252 |
RNA Silencing Pathways in <em>Schizosaccharomyces pombe</em> and <em>Drosophila melanogaster</em>: A DissertationSigova, Alla A. 03 November 2006 (has links)
RNA silencing is an evolutionary conserved sequence-specific mechanism of regulation of gene expression. RNA interference (RNAi), a type of RNA silencing in animals, is based on recognition and endonucleolytic cleavage of target mRNA complimentary in sequence to 21-nucleotide (nt) small RNA guides, called small interfering RNAs (siRNAs). Another class of 21-nt small RNAs, called micro RNAs (miRNAs), is endogenously encoded in eukaryotic genomes. Both production of siRNAs from long double-stranded RNA (dsRNA) and biogenesis of miRNAs from hairpin structures are governed by the ribonuclease III enzyme Dicer. Although produced as duplex molecules, siRNAs and miRNAs are assembled into effector complex, called the RNA-induced silencing complex (RISC), as single-strands. A member of the Argonaute family of small RNA-binding proteins lies at the core of all known RNA silencing effector complexes. Plants and animals contain multiple Argonaute paralogs. In addition to endonucleolytic cleavage, Argonaute proteins can direct translational repression/destabilization of mRNA or transcriptional silencing of DNA sequences by the siRNAdirected production of silent heterochromatin.
The Schizosaccharomyces pombe genome encodes only one of each of the three major classes of proteins implicated in RNA silencing: Dicer (Dcr1), RNA-dependent RNA polymerase (RdRP; Rdp1), and Argonaute (Ago1). These three proteins are required for silencing at centromeres and for the initiation of transcriptionally silent heterochromatin at the mating-type locus. That only one Dicer, RdRP and Argonaute is expressed in S. pombe might reflect the extreme specialization of RNA silencing pathways regulating targets only at the transcriptional level in this organism. We decided to test if classical RNAi can be induced in S. pombe. We introduced a dsRNA hairpin corresponding to a GFP transgene. GFP silencing triggered by dsRNA reflected a change in the steady-state concentration of GFP mRNA, but not in the rate of GFP transcription. RNAi in S. pombe required dcr1, rdp1, and ago1, but did not require chp1, tas3, or swi6, genes required for transcriptional silencing. We concluded that the RNAi machinery in S. pombecould direct both transcriptional and posttranscriptional silencing using a single Dicer, RdRP, and Argonaute protein. Our findings suggest that, in spite of specialization in distinct siRNA-directed silencing pathways, these three proteins fulfill a common biochemical function.
In Drosophila, miRNA and RNAi pathways are both genetically and biochemically distinct. Dicer-2 (Dcr-2) generates siRNAs, whereas the Dicer-1 (Dcr-1)/Loquacious complex produces miRNAs. Argonaute proteins can be divided by sequence similarity into two classes: in flies, the Ago subfamily includes Argonaute1 (Ago1) and Argonaute2 (Ago2), whereas the Piwi subfamily includes Aubergine, Piwi and Argonaute 3. siRNAs and miRNAs direct posttranscriptional gene silencing through effector complexes containing Ago1 or Ago2. The third class of small RNAs, called repeat-associated small interfering RNAs (rasiRNAs), is produced endogenously in the Drosophilagerm line. rasiRNAs mediate silencing of endogenous selfish genetic elements such as retrotransposons and repetitive sequences to ensure genomic stability.
We examined the genetic requirements for biogenesis of rasiRNAs in both male and female germ line of Drosophilaand silencing of 8 different selfish elements, including tree LTR retrotransposons, two non-LTR retrotransposons, and three repetitive sequences. We find that biogenesis of rasiRNAs is different from that of miRNAs and siRNAs. rasiRNA production appears not to require Dicer-1 or Dicer-2. rasiRNAs lack the 2´,3´ hydroxy termini characteristic of animal siRNA and miRNA. While siRNAs derive from both the sense and antisense strands of their dsRNA precursors, rasiRNAs accumulate in antisense polarity to their corresponding target mRNAs. Unlike siRNAs and miRNAs, rasiRNAs function through the Piwi, rather than the Ago, Argonaute protein subfamily. We find that rasiRNAs silence their target RNAs posttranscriptionally: mutations that abrogate rasiRNA function dramatically increase the steady-state mRNA level of rasiRNA targets, but do not alter their rate of transcription, measured by nuclear run-on assay.
Our data suggest that rasiRNAs protect the fly germ line through a silencing mechanism distinct from both the miRNA and RNAi pathways.
|
253 |
Contribution à l'étude et à la synthèse de biomolécules phosphorées en série nucléosidique / Contribution to the synthesis and the study of analogues of phosphorylated biomolecules such as nucleotidesDepaix, Anaïs 30 November 2017 (has links)
Les dérivés phosphorylés de nucléosides naturels ou d'analogues (appelés nucléotides) sont des composés primordiaux largement utilisés comme outils biologiques. Certains d'entre eux présentent également un fort potentiel thérapeutique en particulier comme agents antiviraux ou antitumoraux. La préparation des dérivés polyphosphorylés de nucléosides demeure cependant un challenge du fait de rendements de synthèse parfois faibles et des multiples étapes de purification longues et fastidieuses. Ce manuscrit relève donc de la problématique globale de synthèse de ces composés. Le premier chapitre est consacré à l’étude non exhaustive des méthodes de synthèse décrites dans la littérature pour ces dérivés, en rappelant les avantages et inconvénients de ces approches. Le deuxième chapitre rapporte la voie de synthèse en milieux aqueux de nucléotides, et de quelques analogues, que nous avons développée. Des résultats préliminaires de mécanosynthèse basée sur cette même approche sont également présentés. Enfin, le troisième chapitre porte sur deux voies de synthèse supportée de nucléotides. L’une implique la cytidine et son ancrage sur polyéthylène glycol afin de fournir les dérivés 5’-di- et triphosphate correspondants. L’autre porte sur le développement d’un support tétrapode inédit en vue de son utilisation pour la synthèse de dérivés de l'adénosine. / Phosphorylated derivatives of endogenous nucleosides or analogues (called nucleotides) are crucial compounds widely used as biological tools. Some of them also have a high therapeutic potential, in particular as antiviral or antitumor agents. However, the synthesis of polyphosphorylated derivatives of nucleosides remains a challenge due to low yields as well as long and tedious multiple purification steps. Thus, this manuscript is dealing with the overall problem of synthesis of these compounds. The first chapter is devoted to the non-exhaustive study of the synthetic methods described in the literature for such compounds, recalling the advantages and disadvantages of these approaches. In the second chapter, we report our contribution to an original synthetic pathway in aqueous media of some nucleotides and analogues. Some preliminary results of mecanosynthesis based on the same approach are also presented. Finally, the third chapter refers to supported synthesis of nucleotides with two different approaches. One involves cytidine and its anchoring on polyethylene glycol in order to provide the corresponding 5'-di- and triphosphate derivatives. The other concerns the development of a novel tetrapod support that may be valuable for the synthesis of adenosine derivatives.
|
254 |
Cloning and Cell Cycle Analysis of NuMA, a Phosphoprotein That Oscillates Between the Nucleus and the Mitotic SpindleSparks, Cynthia A. 01 September 1995 (has links)
The overall objective of this study was to identify novel proteins of the nuclear matrix in order to contribute to a better understanding of nuclear structure and organization. To accomplish this, a monoclonal antibody specific for the nuclear matrix was used to screen a human λgt11 expression library. Several cDNAs were isolated, cloned, sequenced, and shown to represent NuMA, the nuclear mitotic spindle apparatus protein. Further characterization of the gene and RNA was undertaken in an effort to obtain information about NuMA. The NuMA gene was present at a single site on human chromosome 11q13. Northern and PCR analysis of NuMA mRNA showed a major 7.2 kb transcript and minor forms of 8.0 and 3.0 kb. The minor forms were shown to be alternatively spliced although their functional significance is not yet understood. Immunofluorescence microscopy demonstrated that NuMA oscillates between the nucleus and the microtubule spindle apparatus during the mitotic cell cycle. NuMA appeared as a 200-275 kDa protein detectable in all mammalian cells except human neutrophils. To determine whether NuMA's changes in intracellular distribution correlated with post-translational modifications, the protein's phosphorylation state was examined through the cell cycle using highly synchronized cells. NuMA was a phosphoprotein in interphase and underwent additional phosphorylation events in mitosis. The mitotic phosphorylation events occurred with similar timing to lamin B (G2/M transition) and were concomitant with NuMA's release from the nucleus and its association with the mitotic spindle. However, the mitotic phosphorylation occurred in the absence of spindle formation. Dephosphorylation of NuMA did not correlate with reassociation with the nuclear matrix but occurred in two distinct steps after nuclear reformation. Based on the timing of these events, phosphorylation may playa role in nuclear processes. In conclusion, the work in this dissertation identified NuMA, a nuclear matrix protein and showed that it is phosphorylated during the cell cycle and may be important for nuclear events such as nuclear organization, transcription, or initiation of DNA replication at G1/S.
|
255 |
How Does ATP Regulate Erythrocyte Glucose Transport?: a DissertationLeitch, Jeffry M. 05 June 2007 (has links)
Human erythrocyte glucose sugar transport displays a complexity that is not explained by available models. Sugar transport was examined in resealed red cell ghosts under equilibrium exchange conditions (intracellular [sugar] = extracellular [sugar]). Exchange 3-O-methylglucose (3MG) import and export are monophasic in the absence of cytoplasmic ATP but are biphasic when ATP is present. Biphasic exchange is observed as the rapid filling of a large compartment (66% cell volume) followed by the slow filling of the remaining cytoplasmic space. Two models for biphasic sugar transport are presented in which 3MG must overcome a sugar-specific, physical (diffusional) or chemical (anomerization) barrier to equilibrate with cell water. The anomerization model was rejected through several lines of direct experimental investigation. 1) The sizes of the fast and slow phases of sugar transport do not correlate with the equilibrium anomer distributions of all GLUT1 sugar substrates. 2) Increasing the rate of anomerization by addition of exogenous intracellular mutarotase has no effect on biphasic transport kinetics. 3) Direct measurement of initial rates of sugar uptake or exchange demonstrates that GLUT1 shows no anomer preference. The physical barrier model was further refined by the use of the counterflow condition (intracellular [sugar] >> extracellular [sugar]). The presence of a physical barrier alone was unable to explain the complex counterflow time courses observed. As a result, the model was modified to include the action of a specific sugar export that is compartmentalized from rapidly equilibrating, GLUT1-mediated uptake and exit.
|
256 |
Estudo das propriedades vibracionais do cristal de timidina em condições extremas de pressão e temperatura / Study of vibrational properties of thymidine crystal in extreme conditions of pressure and temperatureBarboza, Felipe Moreira January 2017 (has links)
BARBOZA, F. M. Estudo das propriedades vibracionais do cristal de timidina em condições extremas de pressão e temperatura. 2017. 187 f. Tese (Doutorado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Giordana Silva (giordana.nascimento@gmail.com) on 2017-04-17T18:08:44Z
No. of bitstreams: 1
2017_tese_fmbarboza.pdf: 14915098 bytes, checksum: 92c70871f92588cea1807a2552402d46 (MD5) / Approved for entry into archive by Giordana Silva (giordana.nascimento@gmail.com) on 2017-04-17T18:09:44Z (GMT) No. of bitstreams: 1
2017_tese_fmbarboza.pdf: 14915098 bytes, checksum: 92c70871f92588cea1807a2552402d46 (MD5) / Made available in DSpace on 2017-04-17T18:09:44Z (GMT). No. of bitstreams: 1
2017_tese_fmbarboza.pdf: 14915098 bytes, checksum: 92c70871f92588cea1807a2552402d46 (MD5)
Previous issue date: 2017 / The unit of sugar and base connected by a N-β-glycosyl linkage is named a nucleoside. In the present work the nucleoside thymidine, whose molecular formula is C10N2O5H14, was studied by Raman spectroscopy, subjecting it extreme conditions of pressure and temperature, as well as X ray diffraction measurements. An auxiliary analysis of normal crystal vibration modes was performed using first principles calculations using the B3LYP functional together with the Gaussian bases 6-31G+(d) and potential energy distribution analysis (PED). These results, together with literature data and Raman spectroscopy measurements in several thymidine scattering geometries, allowed the identification of the various normal modes of crystal vibration. X-ray diffraction experiments were performed in the temperature range between 83 and 413 K. Experiments of Raman spectroscopy under extreme temperature conditions (20 to 380 K) were performed in the spectral range of 20 to 3400 cm-1. From the analysis of the results, it is possible to draw some conclusions. (i) The thymidine crystal remained stable throughout the investigated temperature range, indicating that the temperature effect is not sufficient to modify the hydrogen bonds present between the molecules in such a way as to modify the symmetry of the crystal. (ii) The material studied showed some slight changes in the vibrational spectra in the experiment performed at low temperatures, suggesting, if not a structural phase transition, at least some conformational modification of the thymidine molecules. Raman spectra of thymidine crystal were obtained for pressures up to 5.0 GPa in a diamond anvil cell. The results show the presence of anomaly in the Raman spectrum at pressures close to 3.0 GPa. This anomaly is characterized by disappearance of lattice modes, appearance of some internal modes, splitting of high wavenumbers modes, downshift of modes associated with hydrogen bonds, changes in the intensity of internal modes and discontinuities of the slopes of the wavenumbers versus pressure for several Raman modes. This set of modifications was interpreted as consequence of a phase transition undergone by thymidine close to 3.0 GPa. Further, decompression to atmospheric pressure generates the original Raman spectrum, showing that the pressure-induced phase transition undergone by thymidine crystals is reversible. A comparison with results on other nucleosides submitted to high pressure is also furnished. / Quando a pentose (glicose) e uma base nitrogenada unem-se por meio de uma ligação N-β glicosídica forma-se uma molécula denominada de nucleosídeo. No presente trabalho o nucleosídeo timidina, cuja fórmula molecular é C10N2O5H14, foi estudado através de espectroscopia Raman, submetendo-o a condições extremas de pressão e de temperatura, além de medidas de difração de raios X. Uma análise auxiliar a respeito dos modos normais de vibração do cristal foi realizada através de cálculos de primeiros princípios utilizando-se o funcional B3LYP em conjunto com as bases gaussianas 6-31G+(d) e análise de distribuição de energia potencial (PED). Esses resultados, juntamente com dados da literatura e medidas de espectrocopia Raman em diversas geometrias de esplalhamento na timidina permitiram uma identificação dos vários modos normais de vibração do cristal. Os experimentos por difração de raios X foram realizados no intervalo de temperatura entre 83 e 413 K. Experimentos de espectroscopia Raman sob condições extremas de temperatura (20 a 380 K) foram realizados no intervalo espectral compreendido entre 20 e 3400 cm-1. Da análise dos resultados, é possível tirar algumas conclusões. (i) O cristal de timidina manteve-se estável em todo o intervalo de temperatura investigado, indicando que o efeito de temperatura não é suficiente para modificar as ligações de hidrogênio presentes entre as moléculas de tal forma que haja modificação da simetria do cristal. (ii) O material estudado apresentou algumas leves mudanças nos espectros vibracionais no experimento realizado a baixas temperaturas, sugerindo, se não uma transição de fase estrutural, pelo menos alguma modificação conformacional das moléculas da timidina. Experimentos submetendo o cristal a pressões de até 5 GPa foram realizados utilizando-se uma célula de pressão a extremos de diamantes. Os resultados mostraram anomalias nos espectros Raman por volta de 3.0 GPa. Essas anomalias foram caracterizadas pelo desaparecimento de alguns modos de rede, surgimento de alguns modos internos, deslocamento para menores números de onda de modos associados a ligações de hidrogênio e descontinuidades dos coeficientes lineares de vários modos nos gráficos de número de onda em função da pressão. Essa série de modificações foram interpretadas como consequência de uma transição de fase sofrida pela timidina por volta de 3.0 GPa. Além disso, a descompressão da amostra até a pressão atmosférica mostrou que a transição de fase é reversível. Também fornecemos uma comparação com resultados de outros nucleosídeos submetidos a altas pressões.
|
257 |
Delineating the <em>C. elegans</em> MicroRNA Regulatory Network: A DissertationMartinez, Natalia Julia 10 April 2009 (has links)
Metazoan genomes contain thousands of protein-coding and non-coding RNA genes, most of which are differentially expressed, i.e., at different locations, at different times during development, or in response to environmental signals. Differential gene expression is achieved through complex regulatory networks that are controlled in part by two types of trans-regulators: transcription factors (TFs) and microRNAs (miRNAs). TFs bind to cis-regulatory DNA elements that are often located in or near their target genes, while microRNAs hybridize to cis-regulatory RNA elements mostly located in the 3’ untranslated region (3’UTR) of their target mRNAs.
My work in the Walhout lab has centered on understanding how these trans-regulators interact with each other in the context of gene regulatory networks to coordinate gene expression at the genome-scale level. Our model organism is the free-living nematode Caenorahbditis elegans, which possess approximately 950 predicted TFs and more than 100 miRNAs
Whereas much attention has focused on finding the protein-coding target genes of both miRNAs and TFs, the transcriptional networks that regulate miRNA expression remain largely unexplored. To this end, we have embarked in the task of mapping the first genome-scale miRNA regulatory network. This network contains experimentally mapped transcriptional TF=>miRNA interactions, as well as computationally predicted post-transcriptional miRNA=>TF interactions. The work presented here, along with data reported by other groups, have revealed the existence of reciprocal regulation between these two types of regulators, as well as extensive coordination in the regulation of shared target genes. Our studies have also identified common mechanisms by which miRNAs and TFs function to control gene expression and have suggested an inherent difference in the network properties of both types of regulators.
Reverse genetic approaches have been extensively used to delineate the biological function of protein-coding genes. For instance, genome-wide RNAi screens have revealed critical roles for TFs in C. elegans development and physiology. However, reverse genetic approaches have not been very insightful in the case of non-coding genes: A single null mutation does not result in an easily detectable phenotype for most C. elegans miRNA genes. To help delineate the biological function of miRNAs we sought to determine when and where they are expressed. Specifically, we generated a collection of transgenic C. elegans strains, each containing a miRNA promoter::gfp (Pmir::gfp) fusion construct. The particular pattern of expression of each miRNA gene should help to identify potential genetic interactors that exhibit similar expression patterns, and to design experiments to test the phenotypes of miRNA mutants.
|
258 |
Differentially Expressed MicroRNAs Act As Inhibitors of BDNF in Prefrontal Cortex - Implications for Schizophrenia: A DissertationMellios, Nikolaos 13 March 2009 (has links)
During my thesis work I studied the expression and potential function of brain expressed microRNAs (miRNAs) in human prefrontal cortex (PFC). Initially, I used combinatorial computational analysis and microarray data to identify miRNAs that are predicted with high probability to target the human Brain Derived Neurotrophic Factor (BDNF) 3’ Untranslated Region (3’UTR) and are expressed in moderate to high levels in adult human prefrontal cortex. A subset of 10 miRNAs segregating into 5 different miRNA families (miR-30a-d, miR-103/107, miR-16/195, miR-191 and miR-495) met the above criteria. I then designed a protocol to detect these miRNAs with Locked Nucleic Acid (LNA) in situ hybridization in human prefrontal cortex and determine their layer and cellular expression patterns. LNA in situ revealed differential lamina and cellular enrichment of BDNF-related miRNAs. As an example, miR-30a-5p was found to be enriched in large pyramidal neurons of layer 3, which was verified using laser capture microdissection of layer 3 pyramidal neurons and quantitative Real Time Polymerase Chain Reaction (qRT-PCR) following dissection of upper and deeper layers of human PFC. Parallel to this, I used miRNA qRT-PCR to determine the developmental expression of miRNAs using postmortem PFC tissues ranging from embryonic age to old adulthood and compared miRNA to BDNF protein levels. My results revealed a robust inverse correlation between BDNF-related miRNAs and BDNF protein during late maturation and aging of human prefrontal cortex. In vitro luciferase assays and/or lentivirus mediated neuronal miRNA overexpression experiments validated that at least two miRNAs, miR-30a-5p and miR-195, target human BDNF 3’UTR and mediate its translational repression.
In the second part of my thesis work I measured levels of miR-30a and miR-195 in the prefrontal cortex of patients with schizophrenia and compared them with levels of BDNF protein and BDNF-related GABAergic mRNAs. According to my results differences in miR-195 levels in a subset of subjects diagnosed with schizophrenia were found to be associated with disease related changes in BDNF protein levels and deficits in BDNF dependent GABAergic gene expression.
In the last part of my work I focused on miR-30b, another member of the miR-30 family, which I found to be reduced in the prefrontal cortex of female but not male subjects with schizophrenia. More importantly, disease related changes in miR-30b levels were strongly associated with the age of onset of the disease. Additional experiments in mouse cortex and hippocampus revealed a gender dimorphic expression pattern of this miRNA with higher expression in female brain.
Collectively, my results suggest that miRNAs could participate in novel molecular pathways that play an important role during cortical development and maturation and are potentially linked to the pathophysiology of neuropsychiatric disease.
|
259 |
The chemistry of Algoa Bay ascidiansBromley, Candice Leigh January 2016 (has links)
This thesis investigates the chemistry of 25 ascidian species collected from Algoa Bay, South Africa with a concerted focus on metal accumulation by these ascidians and the possible interaction of these metals with ascidian metabolites. Chapter 2 details the screening techniques employed to establish the presence of nitrogenous metabolites (1H- 15N HMBC), hyper-accumulated metal ions (ICP-MS) and potential metal ion/ ascidian metabolite complexes (LC-ICP-MS/ESI-MS). Unfortunately, exhaustive attempts to detect intact metal ion/ascidian metabolite complexes through the use of liquid chromatography with parallel inductively coupled plasma mass spectrometry/electrospray mass spectrometry (LC-ICPMS/ ESI-MS) were unsuccessful. However, the LC-ICP-MS/ESI-MS data obtained for the crude organic extracts of six of the Algoa Bay ascidian species, Distaplia skoogi, Aplidium monile, Aplidium sp., Didemnum sp., Leptoclindines sp. and Polycitor sp. enabled identification of a number of ten halogenated metabolites, namely the indoles 2.28-2.30, and the tyramine and tyrosine derivatives (2.31-2.33, 2.41, 2.43, 2.44 and 2.46), within the ascidian extracts. This study confirmed that LC-ICP-MS/ESI-MS is a powerful tool for the dereplication of halogenated metabolites in complex mixtures especially where these compounds are present in very small amounts. This study is also the first report of these compounds (eight of which are known) in African ascidians. Compounds 2.32 and 2.46 have not been reported before from a marine source. Compounds 2.28-2.30 and 2.33 were present in sufficient amounts in the respective ascidian extracts to allow their isolation and structure elucidation using standard spectroscopic techniques Chapter 3 explores the ability of ascidians to accumulate a wide range of metal ions at concentrations which are often orders of magnitude higher than those of the surrounding sea water. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the total ion concentrations of 24 metals in 25 Algoa Bay ascidian species. To the best of our knowledge this is the largest and most extensive investigation of metal concentrations in a group of different ascidians occurring in the same area. Hypotheisizing that the metal ion concentrations for each ascidian specimen screened may represent a unique fingerprint for each specimen principal component analysis (PCA) was used in an attempt to establish whether there were spatial, temporal or phylogenetic relationships associated with the metal concentration fingerprints of the ascidians that formed part of this study. The PCA results showed that there were no statistically significant relationships between ascidian metal ion concentrations and either the collection year or the collection site of the ascidians. However, species from the family Didemnidae provided the clearest statistical evidence supporting a phylogenetic relationship between these ascidians and their hyperaccumulated metal ion profiles. Furthermore, these results suggested that ascidian species are indeed actively concentrating metal ions from the surrounding sea water and are not simply sinks for passively accumulated metal ions. Interestingly, the concentration of vanadium in the set of ascidians studied did not appear to correlate with any of the other metals accumulated by these ascidians suggesting that there is possibly a unique method employed for the accumulation of vanadium by ascidians. Chapter 4 investigated this possibility further after the nucleosides 4.10, 4.11, 4.13, 4.15, 4.17 and 4.40 were isolated from the vanadium accumulating ascidian Aplidium monile. Studies into the interactions between nucleosides and vanadyl are unfortunately rare and usually qualitative in nature with limited information provided about the stability or structures of the complexes formed. The vanadyl accumulating aplousobranch ascidians e.g. Aplidium monile dominated our study of Algoa Bay ascidians therefore providing us with the rationale to investigate the relatively little studied binding ability and stability of vandyl-nucleoside complexes. Potentiometric studies were conducted to determine the stability constants of complexes formed between the oxovanadium ion vanadyl (VO2+) and the commercially available nucleosides 4.10-4.14. The data afforded by this analysis clearly confirmed the complexity of the vanadyl/nucleoside complexation and suggested that guanosine (4.12) formed the most stable complex with oxovanadium ions. We were also able to establish a third protonation constant for the hydroxyl moiety in 4.12 with a logK 8.87 which has not been previously reported. Finally, Chapter 5 revisited the cytoxicity two Algoa Bay ascidians, Clavelina sp. and Atriolum marinense the extracts from which produced promising bioactivity results in previous studies against oesophageal cancer cells. The HP-20 fractionated extracts of Clavelina sp. and Atriolum marinense proved to be similalrly cytotoxic to breast cancer cells. With the exception for the 100% acetone(aq)fractions the NMR data for both species suggested that most active non polar fractions were dominated by what appeared to be structurally unremarkable fatty acid glycerides and as such were not pursued further. Purification of the 100% acetone(aq)fraction of A. marinense resulted in the isolation of a styrene trimer, 5.1, common to both ascidian extracts. The NMR simulation software WIN-DAISY was employed to confirm the structure of 5.1. Attempts to establish if 5.1 was an isolation artefact or a product of marine pollution were inconclusive
|
260 |
Épigénétique et méthylation de l’ADN : développement d’outils pour la compréhension du mécanisme de méthylation de l’ADN impliquant UHRF1 / Epigenetics and DNA methylation : development of new tools to understand DNA methylation mechanism involving UHRF1Barthes, Nicolas 18 December 2015 (has links)
La méthylation de l'ADN est une des marques épigénétiques majeures qui intervient dans la régulation de processus physiologiques importants. Par ailleurs, elle a été reconnue comme une cible majeure pour lutter contre le cancer car son dysfonctionnement est impliqué dans le développement de pathologies comme les cancers. Une meilleure compréhension de ce mécanisme permettrait aux chimistes médicinaux de développer de nouveaux inhibiteurs plus spécifiques. Actuellement, un grand nombre d'hypothèse ont été avancées concernant la méthylation de l'ADN et méritent d'être confirmées ou clarifiées. Dans ce contexte, nous avons décidé de développer de nouveaux analogues nucléosidiques fluorescents et ratiométriques présentant un motif 3-hydroxychromones, afin d'étudier la dynamique et le mécanisme de méthylation de la cytosine impliquant UHRF1 et DNMT1. Nous avons tout d'abord décidé de nous focaliser sur la première étape du mécanisme, la reconnaissance du duplexe hémi-méthylé par le domaine SRA de UHRF1. Deux stratégies de marquage de l'ADN ont ainsi été explorées. La première a consisté à remplacer une base azotée naturelle par le fluorophore, afin de sonder l'intérieur du duplexe. Ce biocapteur a ainsi pu être utilisé afin de détecter l'approche du domaine SRA de UHRF1 ainsi que le basculement de la cytosine méthylée dans son site de reconnaissance. La deuxième approche repose sur la modification d'une nucléobase naturelle sur laquelle la sonde ratiométrique est attachée à l'aide d'un bras espaceur insaturé rigide, lui permettant ainsi de sonder les interactions au niveau du grand sillon de l'ADN. / DNA methylation is one the major epigenetic modification and plays an important role in the regulation of major processes. DNA methylation was recently recognized as one of the major target to inhibit and to fight cancer. A deeper insight of the DNA methylation mechanism should help medicinal chemists in the design and research of more specific inhibitors of DNA methylation. Currently, miscellaneous hypotheses are advanced about DNA methylation mechanism and deserve to be confirmed or clarified. In this context, we decided to develop new ratiometric fluorescent nucleoside analogs, incorporating 3-hydroxychromone moiety, to study the dynamics and mechanism of cytosine methylation involving UHRF1 and DNMT1. We firts decided to focus on the first step of the mechanism, the recognition of the hemi-methylated duplex by the SRA domain of UHRF1. Two diferent strategies of labeling DNA were explored. In the firts one, a natural nucleobase was substituted by the fluorescent dye in order to probe inside the duplex. This biosensor allows to detect and monitor the binding of the SRA domain and flipping of the 5-methylcytosine from the duplex into its recognizing site. The second approach is based on a modification of a natural nucleobase on which, through a rigid unsaturated linker, the ratiometric probe was incorporated in order to sense the interaction in the major groove.
|
Page generated in 0.057 seconds