• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 282
  • 76
  • 34
  • 28
  • 24
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 603
  • 603
  • 227
  • 98
  • 78
  • 75
  • 72
  • 56
  • 55
  • 55
  • 52
  • 50
  • 48
  • 43
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
601

Some questions in combinatorial and elementary number theory / Quelques questions de théories combinatoire et élémentaire des nombres

Tringali, Salvatore 26 November 2013 (has links)
Cette thèse est divisée en deux parties : la partie I traite de combinatoire additive, la partie II s’est portée sur des questions de théorie élémentaire des nombres. Dans le chapitre 1, on généralise la transformée de Davenport pour prouver que si S\mathbb A=(A, +)S est un demi-groupe cancellatif (éventuellement non commutatif) et SX, YS sont des sous-ensembles non vides de SAS tels que le sous semi groupe engendré par SYS est commutatif, on a SS|X+Y|\gc\min(\gamma(Y, |X|+|Y|-I)SS, où S\gamma(\ctlot)S dénote la constante de Cauchy-Davenport d’un ensemble. On en obtient une extension des théorèmes de Chowla et Pillai pour les groupes cycliques et une version plus forte d’un théorème additif de Karolyi et Hamidoune. Dans le chapitre 2, on montre que si S(A,+)S est un semi-groupe cancellatif et si SX, Y\subsetcq AS alors SS|X+Y|\gc\min(\gammaX+Y), |X|+|Y|-I)SS. Cela donne une généralisation de l’inégalité de Kemperman pour les groupes sans torsion et une version plus forte du théorème d’Hamidoune-Karolyi. Dans le chapitre 3, on généralise des résultats par Freiman et al., en prouvant que si S(A,\ctlot)S est un semi-groupe linéairement ordonnable et SSS est un sous-ensemble fini de SAS engendrant un sous-semi-groupe non-abélien, alors S|S^2-\gc3|S|-2S. Dans le chapitre 4, on prouve des résultats liés à une conjecture par Gyorgy et Smyth sur la finitude des entiers Sn\gc1S tels que Sn^kS divise Sa^a \pmb^nS pour des entiers fixés SaS, SbS et SkS avec Sk\gc3S, S|ab|\gc2Set S\gcd(a,b) = 1S. Enfin, dans le chapitre 5, on considère une question de divisibilité dans les entiers, en quelque sorte liée au problème de Znam et à la conjecture d’Agoh-Giuga / This thesis is divided into two parts. Part I is about additive combinatorics. Part II deals with questions in elementary number theory. In Chapter 1, we generalize the Davenport transform to prove that if si S\mathbb A=(A, +)S is acancellative semigroup (either abelian or not) and SX, YS are non-empty subsets of SAS such that the subsemigroup generated by SYS is abelian, then SS|X+Y|\gc\min(\gamma(Y, |X|+|Y|-I)SS, where for SZ\subsetcq AS we let S\gamma(Z):=\sup_{z_0\in Z^\times}\in f_(z_0\nc z\inZ) (vm ord)(z-z_0)S. This implies an extension of Chowla’s and Pillai’s theorems for cyclic groups and a stronger version of an addition theorem by Hamidoune and Karolyi for arbitrary groups. In Chapter 2, we show that if S(A, +) is a cancellative semigroup and SX, Y\subsetcq AS then SS|X+Y|\gc\min(\gammaX+Y), |X|+|Y|-I)SS. This gives a generalization of Kemperman’s inequality for torsion free groups and a stronger version of the Hamidoune-Karolyi theorem. In Chapter 3, we generalize results by Freiman et al. by proving that if S(A,\ctlot)S is a linearly orderable semigroup and SSS is a finite subset of SAS generating a non-abelian subsemigroup, then S|S^2-\gc3|S|-2S. In Chapter 4, we prove results related to conjecture by Gyory and Smyth on the sets SR_k^\pm(a,b)S of all positive integers SnS such that Sn^kS divides Sa^a \pmb^nS for fixed integers SaS, SbS and SkS with Sk\gc3S, S|ab|\gc2Set S\gcd(a,b) = 1S. In particular, we show that SR_k^pm(a,b)S is finite if Sk\gc\max(|a|.|b|)S. In Chapter 5, we consider a question on primes and divisibility somchow related to Znam’s problem and the Agoh-Giuga conjecture
602

Prime number races

Haddad, Tony 08 1900 (has links)
Sous l’hypothèse de Riemann généralisée et l’hypothèse d’indépendance linéaire, Rubinstein et Sarnak ont prouvé que les valeurs de x > 1 pour lesquelles nous avons plus de nombres premiers de la forme 4n + 3 que de nombres premiers de la forme 4n + 1 en dessous de x ont une densité logarithmique d’environ 99,59%. En général, l’étude de la différence #{p < x : p dans A} − #{p < x : p dans B} pour deux sous-ensembles de nombres premiers A et B s’appelle la course entre les nombres premiers de A et de B. Dans ce mémoire, nous cherchons ultimement à analyser d’un point de vue numérique et statistique la course entre les nombres premiers p tels que 2p + 1 est aussi premier (aussi appelés nombres premiers de Sophie Germain) et les nombres premiers p tels que 2p − 1 est aussi premier. Pour ce faire, nous présentons au préalable l’analyse de Rubinstein et Sarnak pour pouvoir repérer d’où vient le biais dans la course entre les nombres premiers 1 (mod 4) et les nombres premiers 3 (mod 4) et émettons une conjecture sur la distribution des nombres premiers de Sophie Germain. / Under the Generalized Riemann Hypothesis and the Linear Independence Hypothesis, Rubinstein and Sarnak proved that the values of x which have more prime numbers less than or equal to x of the form 4n + 3 than primes of the form 4n + 1 have a logarithmic density of approximately 99.59%. In general, the study of the difference #{p < x : p in A} − #{p < x : p in B} for two subsets of the primes A and B is called the prime number race between A and B. In this thesis, we will analyze the prime number race between the primes p such that 2p + 1 is also prime (these primes are called the Sophie Germain primes) and the primes p such that 2p − 1 is also prime. To understand this, we first present Rubinstein and Sarnak’s analysis to understand where the bias between primes that are 1 (mod 4) and the ones that are 3 (mod 4) comes from and give a conjecture on the distribution of Sophie Germain primes.
603

On the distribution of polynomials having a given number of irreducible factors over finite fields

Datta, Arghya 08 1900 (has links)
Soit q ⩾ 2 une puissance première fixe. L’objectif principal de cette thèse est d’étudier le comportement asymptotique de la fonction arithmétique Π_q(n,k) comptant le nombre de polynômes moniques de degré n et ayant exactement k facteurs irréductibles (avec multiplicité) sur le corps fini F_q. Warlimont et Car ont montré que l’objet Π_q(n,k) est approximativement distribué de Poisson lorsque 1 ⩽ k ⩽ A log n pour une constante A > 0. Plus tard, Hwang a étudié la fonction Π_q(n,k) pour la gamme complète 1 ⩽ k ⩽ n. Nous allons d’abord démontrer une formule asymptotique pour Π_q(n,k) en utilisant une technique analytique classique développée par Sathe et Selberg. Nous reproduirons ensuite une version simplifiée du résultat de Hwang en utilisant la formule de Sathe-Selberg dans le champ des fonctions. Nous comparons également nos résultats avec ceux analogues existants dans le cas des entiers, où l’on étudie tous les nombres naturels jusqu’à x avec exactement k facteurs premiers. En particulier, nous montrons que le nombre de polynômes moniques croît à un taux étonnamment plus élevé lorsque k est un peu plus grand que logn que ce que l’on pourrait supposer en examinant le cas des entiers. Pour présenter le travail ci-dessus, nous commençons d’abord par la théorie analytique des nombres de base dans le contexte des polynômes. Nous introduisons ensuite les fonctions arithmétiques clés qui jouent un rôle majeur dans notre thèse et discutons brièvement des résultats bien connus concernant leur distribution d’un point de vue probabiliste. Enfin, pour comprendre les résultats clés, nous donnons une discussion assez détaillée sur l’analogue de champ de fonction de la formule de Sathe-Selberg, un outil récemment développé par Porrit et utilisons ensuite cet outil pour prouver les résultats revendiqués. / Let q ⩾ 2 be a fixed prime power. The main objective of this thesis is to study the asymptotic behaviour of the arithmetic function Π_q(n,k) counting the number of monic polynomials that are of degree n and have exactly k irreducible factors (with multiplicity) over the finite field F_q. Warlimont and Car showed that the object Π_q(n,k) is approximately Poisson distributed when 1 ⩽ k ⩽ A log n for some constant A > 0. Later Hwang studied the function Π_q(n,k) for the full range 1 ⩽ k ⩽ n. We will first prove an asymptotic formula for Π_q(n,k) using a classical analytic technique developed by Sathe and Selberg. We will then reproduce a simplified version of Hwang’s result using the Sathe-Selberg formula in the function field. We also compare our results with the analogous existing ones in the integer case, where one studies all the natural numbers up to x with exactly k prime factors. In particular, we show that the number of monic polynomials grows at a surprisingly higher rate when k is a little larger than logn than what one would speculate from looking at the integer case. To present the above work, we first start with basic analytic number theory in the context of polynomials. We then introduce the key arithmetic functions that play a major role in our thesis and briefly discuss well-known results concerning their distribution from a probabilistic point of view. Finally, to understand the key results, we give a fairly detailed discussion on the function field analogue of the Sathe-Selberg formula, a tool recently developed by Porrit and subsequently use this tool to prove the claimed results.

Page generated in 0.0519 seconds