Spelling suggestions: "subject:"cumber theory"" "subject:"1umber theory""
561 |
As Equações Diofantinas Lineares e o Professor de Matemática do Ensino MédioCosta, Eduardo Sad da 21 May 2007 (has links)
Made available in DSpace on 2016-04-27T16:57:53Z (GMT). No. of bitstreams: 1
dissertacao_eduardo_sad_costa.pdf: 3568903 bytes, checksum: 4e09f1b15f7714b64ad56708b0bd9974 (MD5)
Previous issue date: 2007-05-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work involves a qualitative study about whether and how mathematics High-School teachers work with their students the trouble-situations regarding linear Diophantine equations. The study was performed by means of analyzing semi-structured interviews applied on six mathematics teachers from the states of São Paulo and Minas Gerais, teaching at high-school level. The Numbers Elementary Theory has been treated by several researchers on Mathematical Education, as Campbell e Zazkis (2002), Resende (2007), as an adequate subject for the introduction and development of fundamental Mathematical ideas in High- School. However, the results of such investigation show that, although the interviewed teachers affirmed that they did work with problems of discreet mathematics that can be modeled through linear Diophantine equations, none of them seemed to work with their students using the knowledge of these equations properties in order to decide whether they have solution, and what these solutions would be / Neste trabalho apresento um estudo qualitativo sobre se, e como, professores de Matemática do Ensino Médio trabalham com seus alunos situações-problema que recaem em equações diofantinas lineares. O estudo foi feito por meio da análise de entrevistas semi-estruturadas realizadas com seis professores de Matemática dos estados de São Paulo e Minas Gerais que lecionam no Ensino Médio. A Teoria Elementar dos Números vem sendo tratada por diversos pesquisadores de Educação Matemática, como Campbell & Zazkis (2002), Resende (2007), como assunto propício para a introdução e desenvolvimento de idéias Matemáticas fundamentais no Ensino Básico. No entanto os resultados desta investigação indicam que embora os professores entrevistados afirmassem trabalhar com problemas de matemática discreta modeláveis via equação diofantina linear, nenhum deles deu indícios de trabalhar com seus alunos utilizando conhecimentos das propriedades dessas equações para decidir se as mesmas tem solução e quais seriam essas soluções
|
562 |
Conjecture de brumer-stark non abélienne / A non-abelian brumer-Stark conjectureDejou, Gaëlle 24 June 2011 (has links)
La recherche d’annulateurs du groupe des classes d’idéaux d’une extension abélienne de Q est un sujet classique et remonte à des travaux de Kummer et Stickelberger. La conjecture de Brumer-Stark porte sur les extensions abéliennes de corps de nombres et prédit qu’un élément de l’anneau de groupe du groupe de Galois, appelé élément de Brumer-Stickelberger, est un annulateur du groupe des classes de l’extension. De plus, elle stipule que les générateurs des idéaux principaux obtenus possèdent des propriétés bien particulières. Cette thèse est dédiée à la généralisation de cette conjecture aux extensions de corps de nombres galoisiennes mais non abéliennes. Dans un premier temps, nous nous focalisons sur l’étude de l’analogue non abélien de l’élément de Brumer, nécessaire à l’établissement d’une conjecture non abélienne. La seconde partie est consacrée à l’énoncé de la conjecture de Brumer-Stark non abélienne et à ses reformulations, ainsi qu’aux propriétés qu’elle vérifie. Nous nous intéressons notamment aux propriétés de changement d’extension. Nous étudions ensuite le cas spécifique des extensions dont le groupe de Galois possède un sous-groupe abélien H distingué d’indice premier. Sous la validité de la conjecture de Brumer-Stark associée à certaines extensions abéliennes, nous en déduisons deux résultats suivant la parité du cardinal de H : dans le cas impair, nous démontrons la conjecture de Brumer-Stark non abélienne, et dans le cas pair, nous établissons un résultat d’abélianité permettant d’obtenir, sous des hypothèses supplémentaires, la conjecture non abélienne. Enfin nous effectuons des vérifications numériques de la conjecture non abélienne permettant de démontrer cette conjecture dans les exemples testés. / Finding annihilators of the ideal class group of an abelian extension of Q is a classical subject which goes back to work of Kummer and Stickelberger. The Brumer-Stark conjecture deals with abelian extensions of number fields and predicts that a group ring element, called the Brumer-Stickelberger element, annihilates the ideal class group of the extension under consideration. Moreover it specifies that the generators thus obtained have special properties. The aim of this work is to generalize this conjecture to non-abelian Galois extensions. We first focus on the study of a non-abelian analogue of the Brumer element, necessary to establish a non-abelian generalization of the conjecture. The second part is devoted to the statement of our non-abelian conjecture, and the properties it satisfies. We are particularly interested in extension change properties. We then study the specific case of extensions whose Galois group has an abelian normal subgroup H of prime index. If the Brumer-Stark conjecture associated to certain abelian subextensions holds, we prove two results according to the parity of the cardinal of H : in the odd case, we get the non-abelian Brumer-Stark conjecture, and in the even case, we establish an abelianity result implying under additional hypotheses the proof of the non-abelian conjecture. Thanks to PARI-GP, we finally do some numerical verifications of the nonabelian conjecture, proving its validity in the tested examples.
|
563 |
Periods and line arrangements : contributions to the Kontsevich-Zagier period conjecture and to the Terao conjecture. / Périodes et arrangements de droites : contributions à la conjecture des périodes de Kontsevich-Zagier et à la conjecture de Terao.Viu Sos, Juan 30 November 2015 (has links)
La première partie concerne un problème de théorie des nombres, pour laquel nous développons une approche géométrique basé sur des outils provenant de la géométrie algébrique et de la géométrique combinatoire. Introduites par M. Kontsevich et D. Zagier en 2001, les périodes sont des nombres complexes obtenus comme valeurs des intégrales d'une forme particulier, où le domaine et l'intégrande s'expriment par des polynômes avec coefficients rationnels. La conjecture de périodes de Kontsevich-Zagier affirme que n'importe quelle relation polynomiale entre périodes peut s'obtenir par des relations linéaires entre différentes représentations intégrales, exprimées par des règles classiques du calcul intégrale. En utilisant des résolutions de singularités, on introduit une réduction semi-canonique de périodes en se concentrant sur le fait d'obtenir une méthode algorithmique et constructive respectant les règles classiques de transformation intégrale: nous prouvons que n'importe quelle période non nulle, représentée par une certaine intégrale, peut être exprimée sauf signe comme le volume d'un ensemble semi-algébrique compact. La réduction semi-canonique permet une reformulation de la conjecture de périodes de Kontsevich-Zagier en termes de changement de variables préservant le volume entre ensembles semi-algébriques compacts. Via des triangulations et méthodes de la géométrie-PL, nous étudions les obstructions de cette approche comme la généralisation du 3ème Problème de Hilbert. Nous complétons les travaux de J. Wan dans le développement d'une théorie du degré pour les périodes, basée sur la dimension minimale de l'espace ambiance nécessaire pour obtenir une telle réduction compacte, en donnant une première notion géométrique sur la transcendance de périodes. Nous étendons cet étude en introduisant des notions de complexité géométrique et arithmétique pour le périodes basées sur la complexité polynomiale minimale parmi les réductions semi-canoniques d'une période. La seconde partie s'occupe de la compréhension d'objets provenant de la géométrie algébrique avec une forte connexion avec la géométrique combinatoire, pour lesquels nous avons développé une approche dynamique. Les champs de vecteurs logarithmiques sont un outils algébro-analytique utilisés dans l'étude des sous-variétés et des germes dans des variétés analytiques. Nous nous sommes concentré sur le cas des arrangements de droites dans des espaces affines ou projectifs. On s'est plus particulièrement intéressé à comprendre comment la combinatoire d'un arrangement détermine les relations entre les champs de vecteurs logarithmiques associés: ce problème est connu sous le nom de conjecture de Terao. Nous étudions le module des champs de vecteurs logarithmiques d'un arrangement de droites affin en utilisant la filtration induite par le degré des composantes polynomiales. Nous déterminons qu'il n'existent que deux types de champs de vecteurs polynomiaux qui fixent une infinité de droites. Ensuite, nous décrivons l'influence de la combinatoire de l'arrangement de droites sur le degré minimal attendu pour ce type de champs de vecteurs. Nous prouvons que la combinatoire ne détermine pas le degré minimal des champs de vecteurs logarithmiques d'un arrangement de droites affin, en présentant deux pairs de contre-exemples, chaque qu'un d'eux correspondant à une notion différente de combinatoire. Nous déterminons que la dimension des espaces de filtration suit une croissance quadratique à partir d'un certain degré, en dépendant uniquement de la combinatoire de l'arrangement. A fin d'étudier de façon calculatoire une telle filtration, nous développons une librairie de fonctions sur le software de calcul formel Sage. / The first part concerns a problem of number theory, for which we develop a geometrical approach based on tools coming from algebraic geometry and combinatorial geometry. Introduced by M. Kontsevich and D. Zagier in 2001, periods are complex numbers expressed as values of integrals of a special form, where both the domain and the integrand are expressed using polynomials with rational coefficients. The Kontsevich-Zagier period conjecture affirms that any polynomial relation between periods can be obtained by linear relations between their integral representations, expressed by classical rules of integral calculus. Using resolution of singularities, we introduce a semi-canonical reduction for periods focusing on give constructible and algorithmic methods respecting the classical rules of integral transformations: we prove that any non-zero real period, represented by an integral, can be expressed up to sign as the volume of a compact semi-algebraic set. The semi-canonical reduction permit a reformulation of the Kontsevich-Zagier conjecture in terms of volume-preserving change of variables between compact semi-algebraic sets. Via triangulations and methods of PL–geometry, we study the obstructions of this approach as a generalization of the Third Hilbert Problem. We complete the works of J. Wan to develop a degree theory for periods based on the minimality of the ambient space needed to obtain such a compact reduction, this gives a first geometric notion of transcendence of periods. We extend this study introducing notions of geometric and arithmetic complexities for periods based in the minimal polynomial complexity among the semi-canonical reductions of a period. The second part deals with the understanding of particular objects coming from algebraic geometry with a strong background in combinatorial geometry, for which we develop a dynamical approach. The logarithmic vector fields are an algebraic-analytic tool used to study sub-varieties and germs of analytic manifolds. We are concerned with the case of line arrangements in the affine or projective space. One is interested to study how the combinatorial data of the arrangement determines relations between its associated logarithmic vector fields: this problem is known as the Terao conjecture. We study the module of logarithmic vector fields of an affine line arrangement by the filtration induced by the degree of the polynomial components. We determine that there exist only two types of non-trivial polynomial vector fields fixing an infinitely many lines. Then, we describe the influence of the combinatorics of the arrangement on the expected minimal degree for these kind of vector fields. We prove that the combinatorics do not determine the minimal degree of the logarithmic vector fields of an affine line arrangement, giving two pair of counter-examples, each pair corresponding to a different notion of combinatorics. We determine that the dimension of the filtered spaces follows a quadratic growth from a certain degree, depending only on the combinatorics of the arrangements. We illustrate these formula by computations over some examples. In order to study computationally these filtration, we develop a library of functions in the mathematical software Sage.
|
564 |
Equações diofantinas lineares: um desafio motivador para alunos do ensino médioPommer, Wagner Marcelo 13 February 2008 (has links)
Made available in DSpace on 2016-04-27T16:58:35Z (GMT). No. of bitstreams: 1
Wagner Marcelo Pommer.pdf: 487457 bytes, checksum: 51f60af10d10bb565fcf24ce24ac1426 (MD5)
Previous issue date: 2008-02-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work presents a qualitative study guided by the question Is it possible High
School students to make explicit knowledge on linear diofantine equations?', whose
relevance is justified from researches as met in Lopes Junior (2005), revealing that
High School students do not distinguish and they do not understand when the variable
assumes discrete or continuous value, as well as for the fact that Discrete
Mathematics are a relatively forgotten area on Pre-Universitary School, according to
Brolezzi (1996) and Jurkiewicz (2004). This study particularizes Elementar Number
Theory on High School, where researchers as Campbell and Zazkis (2002), Ferrari
(2002) and Resende (2007) emphasizes that problem resolution activities, in an
approach of concepts re-use as divisors and multiples, are propitious for heuristical
development, in a complementary and interrelated approach to Algebra, in compliance
with Maranhão, Machado e Coelho (2005). As methodological reference it was used
Didactical Engineering, described in Artigue (1996), to elaborate, to apply and to
analyze a didactical sequence. The written and oral manifestations indicated that
High School students had developed strategies, operacionalizing the concepts of
multiples and divisors, as well as had used the algebraic equation to search the whole
solutions on the proposed problem situations, thus making explicit knowledge involving
linear diofantine equations / Neste trabalho apresento um estudo qualitativo orientado pela questão É possível a
alunos do Ensino Médio explicitar conhecimentos sobre equações diofantinas
lineares? , cuja relevância se justifica a partir de pesquisas como a de Lopes Junior
(2005), revelando que alunos de Ensino Médio não distinguem e não compreendem
quando a variável assume valor discreto ou contínuo, assim como pelo fato da
Matemática Discreta ser uma área relativamente esquecida no Ensino Básico,
conforme relatam Brolezzi (1996) e Jurkiewicz (2004). Este estudo particulariza como
recorte a Teoria Elementar dos Números no Ensino Médio, onde pesquisadores como
Campbell e Zazkis (2002), Ferrari (2002) e Resende (2007) ressaltam que atividades
de resolução de problemas, num enfoque de re-utilização de conceitos como divisores
e múltiplos, são propícias para o desenvolvimento de heurísticas, numa abordagem
complementar e inter-relacionada com a Álgebra, em conformidade com Maranhão,
Machado e Coelho (2005). Como referencial metodológico foi utilizada a Engenharia
Didática, descrita em Artigue (1996), para elaborar, aplicar e analisar uma seqüência
didática. As manifestações escritas e orais indicaram que os alunos do Ensino Médio
desenvolveram estratégias, operacionalizando os conceitos de múltiplos e divisores,
assim como utilizaram a escrita algébrica para a busca de soluções inteiras nas
situações-problema propostas, explicitando assim conhecimentos envolvendo
equações diofantinas lineares
|
565 |
Uma demonstração analítica do teorema de Erdös-Kac / An analytic proof of Erdös-Kac theoremSilva, Everton Juliano da 03 April 2014 (has links)
Em teoria dos números, o teorema de Erdös-Kac, também conhecido como o teorema fundamental de teoria probabilística dos números, diz que se w(n) denota a quantidade de fatores primos distintos de n, então a sequência de funções de distribuições N definidas por FN(x) = (1/N) #{n <= N : (w(n) log log N)/(log log N)^(1/2)} <= x}, converge uniformemente sobre R para a distribuição normal padrão. Neste trabalho desenvolvemos todos os teoremas necessários para uma demonstração analítica, que nos permitirá encontrar a ordem de erro da convergência acima. / In number theory, the Erdös-Kac theorem, also known as the fundamental theorem of probabilistic number theory, states that if w(n) is the number of distinct prime factors of n, then the sequence of distribution functions N, defined by FN(x) = (1/N) #{n <= N : (w(n) log log N)/(log log N)^(1/2)} <= x}, converges uniformly on R to the standard normal distribution. In this work we developed all theorems needed to an analytic demonstration, which will allow us to find an order of error of the above convergence.
|
566 |
Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number FieldRezola, Nolberto 01 June 2015 (has links)
The ring of integers is a very interesting ring, it has the amazing property that each of its elements may be expressed uniquely, up to order, as a product of prime elements. Unfortunately, not every ring possesses this property for its elements. The work of mathematicians like Kummer and Dedekind lead to the study of a special type of ring, which we now call a Dedekind domain, where even though unique prime factorization of elements may fail, the ideals of a Dedekind domain still enjoy the property of unique prime factorization into a product of prime ideals, up to order of the factors. This thesis seeks to establish the unique prime ideal factorization of ideals in a special type of Dedekind domain: the ring of algebraic integers of an imaginary quadratic number field.
|
567 |
Autour de la conjecture de paritéDe La Rochefoucauld, Thomas 22 October 2012 (has links) (PDF)
Cette thèse porte sur des questions liées à la conjecture de parité. On démontre la conjecture de p-parité pour un certain twist d'une courbe elliptique sur un corps local. On en déduit des résultats globaux d'invariance de la conjecture de p-parité (pour une courbe elliptique) par certaines extensions. Avec l'objectif de généraliser les résultats précédents, on démontre une formule pour les signes locaux des représentations essentiellement symplectiques et modérément ramifiées du groupe de Weil. Cette formule généralise celle, déjà connue, pour les courbes elliptiques ayant potentiellement bonne réduction. Finalement, on fait un premier pas vers la généralisation escomptée en comparant les nombres de Tamagawa et les constantes de régulation pour certains prémotifs.
|
568 |
Twisted Kloosterman sums and cubic exponential sums / Getwisteten Kloosterman Summen und kubischen exponentialen SummenLouvel, Benoît 15 December 2008 (has links)
No description available.
|
569 |
Some questions in combinatorial and elementary number theoryTringali, Salvatore 26 November 2013 (has links) (PDF)
This thesis is divided into two parts. Part I is about additive combinatorics. Part II deals with questions in elementary number theory. In Chapter 1, we generalize the Davenport transform to prove that if si S\mathbb A=(A, +)S is acancellative semigroup (either abelian or not) and SX, YS are non-empty subsets of SAS such that the subsemigroup generated by SYS is abelian, then SS|X+Y|\gc\min(\gamma(Y, |X|+|Y|-I)SS, where for SZ\subsetcq AS we let S\gamma(Z):=\sup_{z_0\in Z^\times}\in f_(z_0\nc z\inZ) (vm ord)(z-z_0)S. This implies an extension of Chowla's and Pillai's theorems for cyclic groups and a stronger version of an addition theorem by Hamidoune and Karolyi for arbitrary groups. In Chapter 2, we show that if S(A, +) is a cancellative semigroup and SX, Y\subsetcq AS then SS|X+Y|\gc\min(\gammaX+Y), |X|+|Y|-I)SS. This gives a generalization of Kemperman's inequality for torsion free groups and a stronger version of the Hamidoune-Karolyi theorem. In Chapter 3, we generalize results by Freiman et al. by proving that if S(A,\ctlot)S is a linearly orderable semigroup and SSS is a finite subset of SAS generating a non-abelian subsemigroup, then S|S^2-\gc3|S|-2S. In Chapter 4, we prove results related to conjecture by Gyory and Smyth on the sets SR_k^\pm(a,b)S of all positive integers SnS such that Sn^kS divides Sa^a \pmb^nS for fixed integers SaS, SbS and SkS with Sk\gc3S, S|ab|\gc2Set S\gcd(a,b) = 1S. In particular, we show that SR_k^pm(a,b)S is finite if Sk\gc\max(|a|.|b|)S. In Chapter 5, we consider a question on primes and divisibility somchow related to Znam's problem and the Agoh-Giuga conjecture
|
570 |
Implémentation matérielle de coprocesseurs haute performance pour la cryptographie asymétriqueGuillermin, Nicolas 06 January 2012 (has links) (PDF)
Dans cette thèse, je propose des architectures de coprocesseurs haute performance pour implémenter les primitives de cryptographie asymétrique, comme le RSA, les courbes elliptiques ou le couplage. Les coprocesseurs décrits dans cette thèse ont été implémentés dans des FPGA, et présentent des performances jamais égalées auparavant dans la littérature publique sur ce type de technologie. La particularité de ces architectures est l'utilisation du Residue Number System, un mode de représentation alternatif qui utilise les restes chinois pour calculer efficacement les opérations arithmétiques sur les grands nombres. Ces travaux permettent de confirmer expérimentalement les avantages théoriques de ce mode de représentation pour l'arithmétique modulaire, issus de [14, 13, 43]. Au bénéfice théorique que le RNS apporte s'ajoute une forte capacité de parallélisation qui permet d'obtenir des designs réguliers et pipelinés, proposant une fréquence maximale importante tout en réalisant les opérations modulaires dans un nombre très faible de cycles, et ce quelle que soit la taille des nombres. A titre d'exemple, une multiplication scalaire sur une courbe de 160 bits s'effectue en 0.57 ms sur un Altera Stratix, et en 4 ms pour une courbe de 512 bits, là ou les techniques de représentation classiques réalisent la même opération en le double de temps, à technologie équivalente (excepté pour des courbes particulières). Dans le cas du couplage, le gain est encore plus intéressant, puisqu'il a permis une division par 4 de latence de la meilleure implémentation sur corps de grande caractéristique au moment de la publication de [35], et la première implémentation d'un couplage à 128 bits de sécurité sur corps de grande caractéristique à descendre en dessous de la milliseconde. Enfin, je démontre la capacité du RNS à sécuriser une implémentation haute performance, en proposant 2 contre-mesures contre les canaux auxiliaires et les fautes s'adaptant efficacement sur les coprocesseurs et pouvant être utilisées pour toutes les primitives cryptographiques basées sur l'arithmétique modulaire de grands nombres.
|
Page generated in 0.0827 seconds