• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 282
  • 76
  • 34
  • 28
  • 24
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 603
  • 603
  • 227
  • 98
  • 78
  • 75
  • 72
  • 56
  • 55
  • 55
  • 52
  • 50
  • 48
  • 43
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Suites digitales et suites k-régulières

Cateland, Emmanuel 03 June 1992 (has links) (PDF)
Nous étudions les fonctions sommatoires des suites digitales. Ces suites sont obtenues en "promenant une fenêtre" sur le développement des entiers en base q, et sont une sous- classe des suites q-régulières. Le comportement asymptotique des fonctions sommatoires est précisé, avec la mise en évidence d'une oscillation "fractale", qui fait intervenir une fonction continue nulle part dérivable. Dans la dernière partie nous nous intéressons à des suites d'entiers à la Cantor, qui s'écrivent dans une base donnée en évitant certains chiffres.
522

Theoretical Aspects of Randomization in Computation

Vishnoi, Nisheeth Kumar 12 July 2004 (has links)
Randomness has proved to be a powerful tool in all of computation. It is pervasive in areas such as networking, machine learning, computer graphics, optimization, computational number theory and is "necessary" for cryptography. Though randomized algorithms and protocols assume access to "truly" random bits, in practice, they rely on the output of "imperfect" sources of randomness such as pseudo-random number generators or physical sources. Hence, from a theoretical standpoint, it becomes important to view randomness as a resource and to study the following fundamental questions pertaining to it: Extraction: How do we generate "high quality" random bits from "imperfect" sources? Randomization: How do we use randomness to obtain efficient algorithms? Derandomization: How (and when) can we "remove" our dependence on random bits? In this thesis, we consider important problems in these three prominent and diverse areas pertaining to randomness. In randomness extraction, we present extractors for "oblivious bit fixing sources". In (a non-traditional use of) randomization, we have obtained results in machine learning (learning juntas) and proved hardness of lattice problems. While in derandomization, we present a deterministic algorithm for a fundamental problem called "identity testing". In this thesis we also initiate a complexity theoretic study of Hilbert's 17th problem. Here identity testing is used in an interesting manner. A common theme in this work has been the use of tools from areas such as number theory in a variety of ways, and often the techniques themselves are quite interesting.
523

Variétés algébriques et corps de fonctions sur un corps fini

Aubry, Yves 13 December 2002 (has links) (PDF)
Nous nous intéressons au nombre de points rationnels des variétés algébriques projectives sur un corps fini. Nous déterminons notamment la fonction zêta (et plus précisément les polynômes caractéristiques de l'endomorphisme de Frobenius sur les espaces de cohomologie étale l-adique) des courbes algébriques projectives sans autre hypothèse de lissité ou d'irréductibilité. Nous montrons la divisibilité de ces polynômes dans un revêtement plat de courbes connexes, que l'on peut interpréter comme un analogue de la conjecture d'holomorphie d'Artin sur les fonctions zêta de Dedekind des corps de nombres. Nous obtenons des bornes sur le nombre de points rationnels sur un corps fini dans un revêtement plat entre courbes algébriques projectives connexes, généralisant les bornes connues et notamment celle de Weil. Nous nous sommes également intéressé au problème du nombre de classes dans les corps de fonctions à une variable sur un corps fini. Nous avons établi un théorème de finitude en ce qui concerne les extensions totalement imaginaires d'extensions totalement réelles dont le nombre de classes d'idéaux du corps imaginaire est fixé . Dans le cas où ces extensions sont quadratiques, nous donnons une formule du nombre de classes relatif en terme de fonction L, ainsi qu'une formule liant cette fonction L à une somme de caractères de type Legendre dans le cas du nombre de classe 1. Si l'on suppose de plus que le groupe de Galois d'une telle extension est isomorphe au groupe de Klein, via la théorie du corps de classes ainsi que des factorisations de fonctions zêta et des estimations de régulateurs, nous déterminons ces corps via les extensions d'Artin-Schreier et les jacobiennes.
524

Des espaces de Berkovich locaux et globaux

Poineau, Jérôme 24 October 2013 (has links) (PDF)
Les dernières années ont vu émerger différents points de vue sur les espaces analytiques p-adiques. Ce texte est consacré spécifiquement à celui qu'a introduit Vladimir G. Berkovich à la fin des années quatre-vingt, et qui s'est révélé l'un des plus féconds. Nous en aborderons divers aspects. Dans la première partie du manuscrit, nous dépasserons le cadre p-adique pour nous intéresser aux espaces analytiques globaux : ceux qui sont définis sur Z ou les anneaux d'entiers de corps de nombres. Nous prouverons qu'ils jouissent, au moins localement, de propriétés analogues à celles des espaces analytiques complexes classiques. Par la suite, nous nous tournerons vers les espaces p-adiques pour étudier leur topologie et démontrer plusieurs résultats de modération. Finalement, nous présenterons quelques applications aux équations différentielles p-adiques sur les courbes analytiques et expliquerons notamment pourquoi leur comportement est contrôlé par un graphe localement fini.
525

Attaques algébriques du problème du logarithme discret sur courbes elliptiques

Vitse, Vanessa 20 October 2011 (has links) (PDF)
Le problème du logarithme discret sur courbes elliptiques est à la base de nombreux protocoles cryptographiques, dans la mesure où on ne connaît jusqu'à présent aucun algorithme permettant de l'attaquer efficacement. Du point de vue de la cryptanalyse, certaines approches basées sur des méthodes de calcul d'indices, et s'appuyant sur la résolution de systèmes pour la recherche de relations, sont toutefois prometteuses. La première partie de cette thèse est consacrée aux techniques de calcul de bases de Gröbner appliquées à la résolution de systèmes polynomiaux. Après une description détaillée des algorithmes F4 et F5 de Faugère considérés comme les plus performants actuellement, on présente et analyse une variante de l'algorithme F4, particulièrement utile pour la résolution de nombreux systèmes "similaires". Plusieurs exemples d'applications de ce nouvel algorithme sont donnés à la fois au domaine du calcul formel et de la cryptographie, montrant que pour certaines attaques algébriques, cette variante est plus efficace que F4 et F5. Etant munis de ces nouveaux outils, on étudie dans la seconde partie le problème du logarithme discret sur courbes algébriques. Après une présentation rapide des attaques existantes sur ce type de courbes dans un contexte général, on s'intéresse plus particulièrement aux courbes elliptiques définies sur des extensions de corps finis. On donne ainsi une description complète des techniques GHS, puis des méthodes d'attaques par décomposition introduites par Gaudry et Diem. On présente notamment des variantes de ces méthodes de décompositions permettant, grâce aux outils introduits en première partie de cette thèse, de fragiliser le DLP (et des problèmes reliés) sur courbes elliptiques sur une gamme plus large d'extensions de corps finis. Enfin, une nouvelle approche combinant les attaques par recouvrement ainsi que les méthodes de décompositions est proposée : cette attaque permet entre autres de calculer complètement le logarithme discret sur des courbes elliptiques définies sur des extensions sextiques de taille jamais atteinte auparavant.
526

On Artin's primitive root conjecture

Ambrose, Christopher Daniel 06 May 2014 (has links)
Artins Vermutung über Primitivwurzeln besagt, dass es zu jeder ganzen Zahl a, die weder 0, ±1 noch eine Quadratzahl ist, unendlich viele Primzahlen p gibt, sodass a eine Primitivwurzel modulo p ist, d.h. a erzeugt eine multiplikative Untergruppe von Q*, dessen Reduktion modulo p Index 1 in (Z/pZ)* hat. Dies wirft die Frage nach Verteilung von Index und Ordnung dieser Reduktion in (Z/pZ)* auf, wenn man p variiert. Diese Arbeit widmet sich verallgemeinerten Fragestellungen in Zahlkörpern: Ist K ein Zahlkörper und Gamma eine endlich erzeugte unendliche Untergruppe von K*, so werden Momente von Index und Ordnung der Reduktion von Gamma sowohl modulo bestimmter Familien von Primidealen von K als auch modulo aller Ideale von K untersucht. Ist Gamma die Gruppe der Einheiten von K, so steht diese Fragestellung in engem Zusammenhang mit der Ramanujan Vermutung in Zahlkörpern. Des Weiteren werden analoge Probleme für rationale elliptische Kurven E betrachtet: Bezeichnet Gamma die von einem rationalen Punkt von E erzeugte Gruppe, so wird untersucht, wie sich Index und Ordnung der Reduktion von Gamma modulo Primzahlen verhalten. Teilweise unter Voraussetzung gängiger zahlentheoretischer Vermutungen werden jeweils asymptotische Formeln in manchen Fällen bewiesen und generelle Schwierigkeiten geschildert, die solche in anderen Fällen verhindern. Darüber hinaus wird eine weitere verwandte Fragestellung betrachtet und bewiesen, dass zu jeder hinreichend großen Primzahl p stets eine Primitivwurzel modulo p existiert, die sich als Summe von zwei Quadraten darstellen lässt und nach oben im Wesentlichen durch die Quadratwurzel von p beschränkt ist.
527

Properties of a generalized Arnold’s discrete cat map

Svanström, Fredrik January 2014 (has links)
After reviewing some properties of the two dimensional hyperbolic toral automorphism called Arnold's discrete cat map, including its generalizations with matrices having positive unit determinant, this thesis contains a definition of a novel cat map where the elements of the matrix are found in the sequence of Pell numbers. This mapping is therefore denoted as Pell's cat map. The main result of this thesis is a theorem determining the upper bound for the minimal period of Pell's cat map. From numerical results four conjectures regarding properties of Pell's cat map are also stated. A brief exposition of some applications of Arnold's discrete cat map is found in the last part of the thesis.
528

Cryptography and number theory in the classroom -- Contribution of cryptography to mathematics teaching

Klembalski, Katharina 02 May 2012 (has links) (PDF)
Cryptography fascinates people of all generations and is increasingly presented as an example for the relevance and application of the mathematical sciences. Indeed, many principles of modern cryptography can be described at a secondary school level. In this context, the mathematical background is often only sparingly shown. In the worst case, giving mathematics this character of a tool reduces the application of mathematical insights to the message ”cryptography contains math”. This paper examines the question as to what else cryptography can offer to mathematics education. Using the RSA cryptosystem and related content, specific mathematical competencies are highlighted that complement standard teaching, can be taught with cryptography as an example, and extend and deepen key mathematical concepts.
529

Criptografia com resíduos quadráticos

Pellegrini, Jerônimo Cordoni January 2017 (has links)
Orientador: Prof. Dr. Jerônimo Cordoni Pellegrini / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2017. / Esse trabalho tem como objetivo mostrar como problemas de difícil solução, em especial o problema dos resíduos quadráticos, podem ser usados para desenvolver criptossistema com segurança demonstrável, com algumas aplicações que podem ser desenvolvidas com alunos de ensino fundamental e médio. Faz-se um resumo da história da criptografia, desde a Cifra de César e passando por diversos criptossistemas historicamente famosos, até chegar ao sigilo perfeito do one-time pad. São trabalhados também alguns conceitos matemáticos necessários, como as funções de mão única e uma breve explicação de algumas funções conjecturadas de mão única, que podem ser usadas em sistemas criptográficos seguros. Em seguida, apresenta-se os geradores de números pseudo-aleatórios, em especial o de Blum-Blum-Shub por empregar resíduos quadráticos. A seguir, há uma breve apresentação das funções de hash e do problema do aniversário associado a elas, com uma função de hash construída baseada no gerador de Blum-Blum-Shub. Também importante é a aplicação na encriptação com chave pública, em especial o criptossistema de Rabin, que também é usado para estabelecer um sistema de votação com base no homomorfismo apresentado por esse sistema. Para finalizar, fala-se sobre as provas de conhecimento zero e como as raízes quadradas módulo N podem ser utilizadas para isso, em particular com o Protocolo de Feige-Fiat-Shamir. Uma aplicação para a sala de aula é dada na forma de um leilão, utilizando o conceito da dificuldade da raiz quadrada modular. / The main objective of this work is to show how hard to solve problems, specially the problem of quadratic residuality, can be used to create cryptographic algorithms with provable security. Some applications could be done with students from elementary and high school. We will start with a brief history of cryptography, from Cesar Cipher and going through several famous cryptosystems until the perfect secrecy of the one-time pad. We will work in a few basic concepts, such as one-way functions and a succinct explanation on some functions that are conjectured to be one-way and can be used in provably secure cryptographic systems. We choose the modular squaring to show on the following chapters how one-way functions are used to build several algorithms (pseudo-random number generators, hash functions, public key encryption, a voting system based on a homomorphic cryptosystem and, at last, zero-knowledge proofs). We will provide a classroom example in the ways of an auction, using the difficulty of the modular square root.
530

O-minimality, nonclassical modular functions and diophantine problems

Spence, Haden January 2018 (has links)
There now exists an abundant collection of conjectures and results, of various complexities, regarding the diophantine properties of Shimura varieties. Two central such statements are the Andre-Oort and Zilber-Pink Conjectures, the first of which is known in many cases, while the second is known in very few cases indeed. The motivating result for much of this document is the modular case of the Andre-Oort Conjecture, which is a theorem of Pila. It is most commonly viewed as a statement about the simplest kind of Shimura varieties, namely modular curves. Here, we tend instead to view it as a statement about the properties of the classical modular j-function. It states, given a complex algebraic variety V, that V contains only finitely many maximal special subvarieties, where a special variety is one which arises from the arithmetic behaviour of the j-function in a certain natural way. The central question of this thesis is the following: what happens if in such statements we replace the j-function with some other kind of modular function; one which is less well-behaved in one way or another? Such modular functions are naturally called nonclassical modular functions. This question, as we shall see, can be studied using techniques of o-minimality and point-counting, but some interesting new features arise and must be dealt with. After laying out some of the classical theory, we go on to describe two particular types of nonclassical modular function: almost holomorphic modular functions and quasimodular functions (which arise naturally from the derivatives of the j-function). We go on to prove some results about the diophantine properties of these functions, including several natural Andre-Oort-type theorems, then conclude by discussing some bigger-picture questions (such as the potential for nonclassical variants of, say, Zilber-Pink) and some directions for future research in this area.

Page generated in 0.086 seconds