• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 282
  • 76
  • 34
  • 28
  • 24
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 603
  • 603
  • 227
  • 98
  • 78
  • 75
  • 72
  • 56
  • 55
  • 55
  • 52
  • 50
  • 48
  • 43
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
591

The Herzog-Schönheim Conjecture for Finite Pyramidal Groups

Andaloro, Leah E. 21 April 2023 (has links)
No description available.
592

Zur Konstruktion einfacher Charaktere und der Fortsetzungen ihrer Heisenbergdarstellungen für lokale zentral-einfache Algebren

Grabitz, Martin 05 July 2000 (has links)
In dieser Dissertationsschrift soll erkl{\"a}rt werden, wie auf der Grundlage von einfachen Strata, wie sie in einer gemeinsamen Arbeit mit Broussous \cite{BG} betrachtet wurden, einfache Charaktere f{\"u}r lokale einfache Algebren konstruiert werden k{\"o}nnen, wobei die Konstruktion den Vorbildern von Bushnell und Kutzko im zerfallenden Fall \cite{BK1} und von Zink \cite{Z7} im Falle eines Schiefk{\"o}rpers folgt. Der Begriff des einfachen Charakters geht auf die Arbeit \cite{BK1} zur{\"u}ck und bezeichnet eine ausgezeichnete Auswahl von Heisenbergcharakteren, die zu einem stabilen Darstellungsfilter geh{\"o}ren, der gem{\"a}{ss} \cite{Z2}(Hauptsatz 1.4) einem Darstellungsfilter zugeordnet wird, der zu einer absteigenden Normalreihe $$1+\R\supset1+\R^2\supset\ldots$$ geh{\"o}rt, wobei $\R$ das Jacobsonradikal einer erblichen Ordnung bezeichnet. Wir werden hier nur von Hauptordnungen ausgehen, d.h. von dem Fall, da{ss} $\R$ und seine Potenzen gebrochene Hauptideale sind. Diese Vorgehensweise und auch die besondere Auswahl der Heisenbergcharaktere in Form von einfachen Charakteren, wird durch die Konstruktion im Falle eines Schiefk{\"o}rpers \cite{Z7} und durch den abstrakten Matchingsatz \cite{BDKV} gerechtfertigt. Im Falle eines lokalen zentralen Schiefk{\"o}rpers ist n{\"a}mlich der Bewertungsring die einzige erbliche Ordnung und die einfachen Charaktere sind alle Heisenbergcharaktere die zu einem stabilen Darstellungsfilter geh{\"o}ren, der gem{\"a}{ss} \cite{Z2}(Hauptsatz 1.4) einem Darstellungsfilter, der zur absteigenden Normalreihe $$1+\pin_D\supset1+\pin_D^2\supset\ldots$$ geh{\"o}rt, zugeordnet wird, wobei $\pin_D$ das Bewertungsideal des Schiefk{\"o}rpers $D$ bezeichnet. Der abstrakte Matchingsatz liefert nun die Existenz einer Bijektion zwischen den irreduziblen glatten Darstellungen der multiplikativen Gruppe des lokalen zentralen Schiefk{\"o}rpers $D$ und den irreduziblen quadratintegrierbaren glatten Darstellungen einer beliebigen anderen lokalen zentraleinfachen Algebra vom selben reduzierten Grad {\"u}ber demselben nicht-archimedischen Grundk{\"o}rper $F$, welche den Charakter einer Darstellung in dem Sinne erh{\"a}lt, da{ss} die Charakterwerte auf den Konjugationsklassen elliptischer Elemente der verschiedenen Algebren, welche mithilfe ihrer Minimalpolynome identifiziert werden k{\"o}nnen, bis auf ein Vorzeichen {\"u}bereinstimmen. Wir werden hier kanonische Bijektionen zwischen den einfachen Charakteren f{\"u}r verschiedene zentraleinfache Algebren vom selben reduzierten Grad {\"u}ber demselben Grundk{\"o}rper angeben, von denen wir erwarten, da{ss} sie mit der Abbildung des abstrakten Matchingsatzes vertr{\"a}glich sind. Das dieses in der Tat der Fall ist, wurde bisher nur in einfachen F{\"a}llen wie \cite{He} und \cite{BH2} gezeigt, jedoch wurde in der Arbeit \cite{Z4} bereits mithilfe der Konstruktionen von \cite{Z7} und \cite{BK3} eine Bijektion zwischen den irreduziblen glatten Darstellungen der multiplikativen Gruppe des lokalen zentralen Schiefk{\"o}rpers $D$ vom Index $N$ {\"u}ber einem Grundk{\"o}rper $F$ und den irreduziblen essentiell quadratintegrierbaren glatten Darstellungen von $Gl_N(F)$ konstruiert, welche den Artinf{\"u}hrer und den formalen Grad einer Darstellung erh{\"a}lt. Da die Abbildung des abstrakten Matchingsatzes dieselben Forderungen erf{\"u}llt, kommt dies der gew{\"u}nschten Vertr{\"a}glichkeit schon sehr nahe und wir erf{\"u}llen mit unserer Konstruktion insbesondere die in der Arbeit \cite{Z4} gemachte Forderung die dort im Bezug auf die einfachen Charaktere getroffen Auswahlen noch unabh{\"a}ngiger von den jeweiligen Algebren zu gestalten. Die hier getroffene Auswahl wird durch die Verwendung sogenannter spezieller approximierender Folgen getroffen, welche sich aus einer Verallgemeinerung der in \cite{BG} gemachten {\"U}berlegungen ergeben. Im Anschlu{ss} an die Konstruktion und den Vergleich einfacher Charaktere werden wir in einer gro{ss}en Anzahl von F{\"a}llen zeigen, da{ss} sich die Heisenbergdarstellungen, die wir zu den einfachen Charakteren erhalten, in kanonischer Weise fortsetzen lassen und wir erwarten von diesen Fortsetzungen, da{ss} sie analoge Eigenschaften besitzen, wie die sogenannten ``$\beta$-Fortsetzungen'' von \cite{BK1}(5.2.1) im zerfallenden Fall. Damit k{\"o}nnen wir in diesen F{\"a}llen eine Liste von hypothetischen einfachen Typen angeben, von denen wir vermuten, da{ss} sie alle Bernsteinkomponenten parametrisieren, welche irreduzible essentiell quadratintegrierbare Darstellungen enthalten. Insbesondere vermuten wir, da{ss} sich die supercuspidalen Darstellungen mittels kompakter Induktion aus Fortsetzungen solcher einfacher Typen auf eine kompakt modulo Zentrum Untergruppe gewinnen lassen. Um die Vollst{\"a}ndigkeit dieser Konstruktion zu demonstrieren, h{\"a}tten wir allerdings noch die Eigenschaft ``Verkettung impliziert Konjugation'' zu zeigen, welche wir ebenfalls auf eine Folgearbeit verschieben m{\"u}ssen. Beabsichtig w{\"a}re dann ein Vollst{\"a}ndigkeitsbeweis mit dem abstrakten Matchingsatz wie bei L. Corwin \cite{Co} oder in \cite{Z4}. Wir weisen hier nur in Spezialf{\"a}llen nach, dass die Typendarstellungen, welche wir hier angegeben haben, tats{\"a}chlich Typen im Sinne von \cite{BK4}(4.1)(4.2) sind. Insbesondere sind es auch unsere Berechnungen in der Arbeit \cite{GSZ}, welche dem von uns im Geiste von \cite{Z7} und \cite{BK1} gemachten Ans{\"a}tzen hohe Evidenz geben. / In this thesis, we try to explain how simple characters for arbitrary central simple algebras over a non-archimedian local field $F$ can be constructed. Moreover, we introduce a kind of matching of simple characters between different algebras of fixed reduced degree. If the index of the algebra $A$ is odd or $A=M_l(D)$, where $l$ is an arbitrary prime number and $D$ a central division algebra over $F$, we can extend the Heisenberg representations associated to the simple characters to level-0 and obtain a hypothetical list of simple types. For $A=M_l(D)$ and if the residual field of $F$ is not the field with two elements, we can proof that all so-called maximal simple types in our list are simple types in the sense of \cite{BK4} and their extensions to their stabelizers induce supercupidal representations of $G_l(D)$. Using the the heuristical relation via the abstract matching theorem of \cite{BDKV} to the cases of a division algebra due to \cite{Z5} and to the split case due to \cite{BK1}, we conjecture that all supercuspidal representations of $Gl_l(D)$ can be obtained by this way.
593

Irrégularités dans la distribution des nombres premiers et des suites plus générales dans les progressions arithmétiques

Fiorilli, Daniel 08 1900 (has links)
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <<Biais de Chebyshev>>, qui s'observe dans les <<courses de nombres premiers>>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$. / The main subject of this thesis is the distribution of primes in arithmetic progressions, that is of primes of the form $qn+a$, with $a$ and $q$ fixed, and $n=1,2,3,\dots$ The thesis also compares different arithmetic sequences, according to their behaviour over arithmetic progressions. It is divided in four chapters and contains three articles. The first chapter is an invitation to the subject of analytic number theory, which is followed by a review of the various number-theoretic tools to be used in the following chapters. This introduction also contains some research results, which we found adequate to include. The second chapter consists of the article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, which is joint work with Professor Greg Martin. The goal of this article is to study <<Chebyshev's Bias>>, a phenomenon appearing in <<prime number races>>. Chebyshev was the first to observe that there tends to be more primes of the form $4n+3$ than of the form $4n+1$. More generally, Rubinstein and Sarnak showed the existence of the quantity $\delta(q;a,b)$, which stands for the probability of having more primes of the form $qn+a$ than of the form $qn+b$. In this paper, we establish an asymptotic series for $\delta(q;a,b)$ which is precise to an arbitrary order of precision (in terms of negative powers of $q$). %(it can be instantiated with an error term smaller than any negative power of $q$). We also provide many numerical results supporting our formulas. The third chapter consists of the article \emph{Residue classes containing an unexpected number of primes}. We fix an integer $a \neq 0$ and study the distribution of the primes of the form $qn+a$, on average over $q$. We show that the choice of $a$ has a significant influence on this distribution, and that some arithmetic progressions contain, on average over q, fewer primes than typical arithmetic progressions. This phenomenon is quite surprising since in light of the prime number theorem for arithmetic progressions, the primes are equidistributed in the residue classes $\bmod q$. The fourth chapter consists of the article \emph{The influence of the first term of an arithmetic progression}. In this article we are interested in studying more general arithmetic sequences and finding irregularities similar to those observed in chapter three. Examples of such sequences are the integers which can be written as the sum of two squares, values of binary quadratic forms, prime $k$-tuples and integers free of small prime factors. We show that a broad class of arithmetic sequences exhibits such irregularities over the arithmetic progressions $a\bmod q$, with $a$ fixed and on average over $q$.
594

Sur la distribution des valeurs de la fonction zêta de Riemann et des fonctions L au bord de la bande critque

Lamzouri, Youness January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
595

As equações diofantinas lineares e o livro didático de matemática para o ensino médio / The linear diophantine equations and the mathematics textbook for high school

Oliveira, Silvio Barbosa de 24 May 2006 (has links)
Made available in DSpace on 2016-04-27T16:57:42Z (GMT). No. of bitstreams: 1 dissertacao_silvio_barbosa_oliveira.pdf: 371682 bytes, checksum: 4f27d9c132d5173732426c8e48699248 (MD5) Previous issue date: 2006-05-24 / This work involves a qualitative study of how the theme of linear Diophantine equations is approached in mathematics textbooks for high school students. Using the methods associated with content analysis (Bardin, 1977), I search for references, in both explicit and implicit forms, to these equations in two different sets of high school mathematics textbooks, both of which had been approved in the last PNLEM (a national project for the assessment of high school textbooks). Although elementary number theory has been highlighted by researchers in mathematics education, such as Campbell and Zazkis (2002), as a subject apt for the introduction and development of fundamental mathematical ideas in compulsory education, the results of this investigation indicate that it receives little attention in the textbooks analysed / Neste trabalho apresento um estudo qualitativo sobre a abordagem dada pelo livro didático do Ensino Médio ao tema equações diofantinas lineares . Por meio de uma análise de conteúdo, segundo Bardin (1977), busquei o assunto em sua forma explícita e implícita em duas coleções de Matemática para o Ensino Médio, aprovadas no último PNLEM. Embora a Teoria Elementar dos Números venha sendo tratada por pesquisadores de Educação Matemática, como Campbell e Zazkis (2002), como assunto propício para a introdução e desenvolvimento de idéias matemáticas fundamentais, no Ensino Básico, os resultados desta investigação indicam a pouca exploração do assunto por parte das coleções analisadas
596

Some Generalized Fermat-type Equations via Q-Curves and Modularity

Barroso de Freitas, Nuno Ricardo 22 October 2012 (has links)
The main purpose of this thesis is to apply the modular approach to Diophantine equations to study some Fermat-type equations of signature (r; r; p) with r >/= 5 a fixed prime and “p” varying. In particular, we will study equations of the form x(r) + y(r) = Cz(p), where C is an integer divisible only by primes “q” is non-identical to 1; 0 (mod “r”) and obtain explicit arithmetic results for “r” = 5, 7, 13. We start with equations of the form x(5) + y(5) = Cz(p). Firstly, we attach two Frey curves E; F defined over Q(square root 5) to putative solutions of the equation. Then by using the work of J. Quer on embedding problems and on abelian varieties attached to Q-curves we prove that the p-adic Galois representations attached to E, F can be extended to p-adic representations E), (F) of Gal(Q=Q). Finally, we apply Serre's conjecture to the residual representations  (E), (F) and using Siksek's multi-Frey technique we conclude that the initial solution can not exist. We also describe a general method for attacking infinitely many equations of the form x(r) + y(r) = Cz(p) for all r>/= 7. The method makes use of elliptic curves over totally real fields, modularity and irreducibility results for representations attached to elliptic curves and level lowering theorems for Hilbert modular forms. Indeed, for each fixed “r” we produce several Frey curves defined over K+, the maximal totally real subfield of Q(xi-r). Moreover, if “r” is of the form 6k + 1 we prove the existence of a Frey curve defined over K(0) the subfield of K(+) of degree k. We prove also an irreducibility result for the mod “p” representations attached to certain elliptic curves and a modularity statement for elliptic curves over totally real abelian number fields satisfying some local conditions at 3. Finally, for r = 7 and r = 13 we are able to compute the required spaces of (Hilbert) newforms and by applying our general methods we obtain explicit arithmetic results for equations of signature (7; 7; p) and (13; 13; p). We end by providing two more Frey k-curves (a generalization of Q-curve), where “k” is a certain subfield of K(+), when “r” is a fixed prime of the form 4m+1. / En esta tesis, utilizaremos el método modular para profundizar en el estudio de las ecuaciones de tipo (r; r; p) para r un primo fijado. Empezamos por utilizar la teoría de J. Quer sobre variedades abelianas asociadas con Q-curvas y embedding problems para producir dos curvas de Frey asociadas con hipotéticas soluciones de infinitas ecuaciones de tipo (5; 5; p). Después, utilizando la conjetura de Serre y el método multi-Frey de Siksek demostraremos que las hipotéticas soluciones no pueden existir. Describiremos también un método general que nos permite atacar un número infinito de ecuaciones de tipo (r; r; p) para cada primo “r” mayor o igual que 7. El método hace uso de curvas elípticas sobre cuerpos de números, teoremas de modularidad, teoremas de bajada de nivel y formas modulares de Hilbert. Además, para ecuaciones de tipo (7; 7; p) y (13; 13; p) calcularemos los espacios de formas modulares relevantes y demostraremos que una familia infinita de ecuaciones no admite cierto tipo de soluciones. Además, demostraremos un nuevo teorema de modularidad para curvas elípticas sobre cuerpos totalmente reales abelianos. Finalmente, para primos congruentes con 1 módulo 4 propondremos dos curvas de Frey más. Demostraremos que son “k-curves” (una generalización de Q-curva) y también que satisfacen las propiedades necesarias para que pueda ser útiles en la aplicación del método modular.
597

Irrégularités dans la distribution des nombres premiers et des suites plus générales dans les progressions arithmétiques

Fiorilli, Daniel 08 1900 (has links)
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <<Biais de Chebyshev>>, qui s'observe dans les <<courses de nombres premiers>>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$. / The main subject of this thesis is the distribution of primes in arithmetic progressions, that is of primes of the form $qn+a$, with $a$ and $q$ fixed, and $n=1,2,3,\dots$ The thesis also compares different arithmetic sequences, according to their behaviour over arithmetic progressions. It is divided in four chapters and contains three articles. The first chapter is an invitation to the subject of analytic number theory, which is followed by a review of the various number-theoretic tools to be used in the following chapters. This introduction also contains some research results, which we found adequate to include. The second chapter consists of the article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, which is joint work with Professor Greg Martin. The goal of this article is to study <<Chebyshev's Bias>>, a phenomenon appearing in <<prime number races>>. Chebyshev was the first to observe that there tends to be more primes of the form $4n+3$ than of the form $4n+1$. More generally, Rubinstein and Sarnak showed the existence of the quantity $\delta(q;a,b)$, which stands for the probability of having more primes of the form $qn+a$ than of the form $qn+b$. In this paper, we establish an asymptotic series for $\delta(q;a,b)$ which is precise to an arbitrary order of precision (in terms of negative powers of $q$). %(it can be instantiated with an error term smaller than any negative power of $q$). We also provide many numerical results supporting our formulas. The third chapter consists of the article \emph{Residue classes containing an unexpected number of primes}. We fix an integer $a \neq 0$ and study the distribution of the primes of the form $qn+a$, on average over $q$. We show that the choice of $a$ has a significant influence on this distribution, and that some arithmetic progressions contain, on average over q, fewer primes than typical arithmetic progressions. This phenomenon is quite surprising since in light of the prime number theorem for arithmetic progressions, the primes are equidistributed in the residue classes $\bmod q$. The fourth chapter consists of the article \emph{The influence of the first term of an arithmetic progression}. In this article we are interested in studying more general arithmetic sequences and finding irregularities similar to those observed in chapter three. Examples of such sequences are the integers which can be written as the sum of two squares, values of binary quadratic forms, prime $k$-tuples and integers free of small prime factors. We show that a broad class of arithmetic sequences exhibits such irregularities over the arithmetic progressions $a\bmod q$, with $a$ fixed and on average over $q$.
598

Sur la distribution des valeurs de la fonction zêta de Riemann et des fonctions L au bord de la bande critque

Lamzouri, Youness January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
599

Théorie algorithmique des nombres et applications à la cryptanalyse de primitives cryptographiques

Thomé, Emmanuel 13 December 2012 (has links) (PDF)
Le problème de la factorisation et celui du logarithme discret sont deux fondements essentiels de nombreux algorithmes de la cryptographie à clé publique. Dans le champ des algorithmes pour attaquer ces problèmes éminemment ardus, le crible algébrique et ses algorithmes cousins occupent une place de première importance. La première partie de ce mémoire est consacrée à la présentation de la " famille " du crible algébrique, et à plusieurs de mes contributions dans ce domaine. D'autres travaux sont abordés dans la partie suivante, notamment en lien avec le problème du logarithme discret sur les jacobiennes de courbes, et à ma contribution à de nouveaux algorithmes pour ce problème dans certains cas particuliers. La partie 3 du mémoire aborde mes travaux sur le thème de l'algèbre linéaire creuse sur les corps finis, motivés par le contexte d'application des algorithmes précédemment cités. La partie 4, enfin, traite de mes travaux dans le domaine de l'arithmétique, notamment concernant l'arithmétique des polynômes sur GF(2). La proximité des travaux apparaissant dans ces parties 3 et 4 avec des problématiques d'implantation indique le souci permanent, dans mes travaux, de ne pas laisser de côté cet aspect.
600

Paradoxos geométricos em sala de aula / Geometric paradoxes in classroon

Sentone, Francielle Gonçalves 10 February 2017 (has links)
CAPES / Apresentamos neste trabalho alguns paradoxos lógico-matemáticos, como o paradoxo de Galileu, e também alguns paradoxos geométricos, como os paradoxos de Curry, de Hooper e de Banach-Tarski. Empregamos os paradoxos de Curry e de Hooper para motivar o estudo de conceitos de Geometria e de Teoria dos Números, tais como área, semelhança de triângulos, o Teorema de Pitágoras, razões trigonométricas no triângulo retângulo, o coeficiente angular da reta e a sequência de Fibonacci, e organizamos atividades lúdicas para a sala de aula no Ensino Fundamental e no Ensino Médio. / We present in this work some logical-mathematical paradoxes, as Galileo's paradox, and also some geometric paradoxes, such as Curry's paradox, Hooper's paradox and the Banach-Tarski paradox. We employ the Curry and Hooper paradoxes to motivate the study of concepts of Geometry and Number Theory, such as area, triangle similarity, Pythagorean Theorem, trigonometric ratios in the right triangle, angular coefficient of the line, and Fibonacci sequence, and we organize recreation activities for the classroom in Elementary and High School.

Page generated in 0.13 seconds