• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 282
  • 76
  • 34
  • 28
  • 24
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 603
  • 603
  • 227
  • 98
  • 78
  • 75
  • 72
  • 56
  • 55
  • 55
  • 52
  • 50
  • 48
  • 43
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Problems in combinatorial number theory

Amirkhanyan, Gagik M. 22 May 2014 (has links)
The dissertation consists of two parts. The first part is devoted to results in Discrepancy Theory. We consider geometric discrepancy in higher dimensions (d > 2) and obtain estimates in Exponential Orlicz Spaces. We establish a series of dichotomy-type results for the discrepancy function which state that if the L¹ norm of the discrepancy function is too small (smaller than the conjectural bound), then the discrepancy function has to be very large in some other function space.The second part of the thesis is devoted to results in Additive Combinatorics. For a set with small doubling an order-preserving Freiman 2-isomorphism is constructed which maps the set to a dense subset of an interval. We also present several applications.
232

ON P-ADIC FIELDS AND P-GROUPS

Sordo Vieira, Luis A. 01 January 2017 (has links)
The dissertation is divided into two parts. The first part mainly treats a conjecture of Emil Artin from the 1930s. Namely, if f = a_1x_1^d + a_2x_2^d +...+ a_{d^2+1}x^d where the coefficients a_i lie in a finite unramified extension of a rational p-adic field, where p is an odd prime, then f is isotropic. We also deal with systems of quadratic forms over finite fields and study the isotropicity of the system relative to the number of variables. We also study a variant of the classical Davenport constant of finite abelian groups and relate it to the isotropicity of diagonal forms. The second part deals with the theory of finite groups. We treat computations of Chermak-Delgado lattices of p-groups. We compute the Chermak-Delgado lattices for all p-groups of order p^3 and p^4 and give results on p-groups of order p^5.
233

Axiom of Choice Equivalences and Some Applications

Race, Denise T. (Denise Tatsch) 08 1900 (has links)
In this paper several equivalences of the axiom of choice are examined. In particular, the axiom of choice, Zorn's lemma, Tukey's lemma, the Hausdorff maximal principle, and the well-ordering theorem are shown to be equivalent. Cardinal and ordinal number theory is also studied. The Schroder-Bernstein theorem is proven and used in establishing order results for cardinal numbers. It is also demonstrated that the first uncountable ordinal space is unique up to order isomorphism. We conclude by encountering several applications of the axiom of choice. In particular, we show that every vector space must have a Hamel basis and that any two Hamel bases for the same space must have the same cardinality. We establish that the Tychonoff product theorem implies the axiom of choice and see the use of the axiom of choice in the proof of the Hahn- Banach theorem.
234

The Atkin operator on spaces of overconvergent modular forms and arithmetic applications

Vonk, Jan Bert January 2015 (has links)
We investigate the action of the Atkin operator on spaces of overconvergent p-adic modular forms. Our contributions are both computational and geometric. We present several algorithms to compute the spectrum of the Atkin operator, as well as its p-adic variation as a function of the weight. As an application, we explicitly construct Heegner-type points on elliptic curves. We then make a geometric study of the Atkin operator, and prove a potential semi-stability theorem for correspondences. We explicitly determine the stable models of various Hecke operators on quaternionic Shimura curves, and make a purely geometric study of canonical subgroups.
235

Commutative n-ary Arithmetic

Bingham, Aram 15 May 2015 (has links)
Motivated by primality and integer factorization, this thesis introduces generalizations of standard binary multiplication to commutative n-ary operations based upon geometric construction and representation. This class of operations are constructed to preserve commutativity and identity so that binary multiplication is included as a special case, in order to preserve relationships with ordinary multiplicative number theory. This leads to a study of their expression in terms of elementary symmetric polynomials, and connections are made to results from the theory of polyadic (n-ary) groups. Higher order operations yield wider factorization and representation possibilities which correspond to reductions in the set of primes as well as tiered notions of primality. This comes at the expense of familiar algebraic properties such as associativity, and unique factorization. Criteria for primality and a naive testing algorithm are given for the ternary arithmetic, drawing heavily upon modular arithmetic. Finally, connections with the theory of partitions of integers and quadratic forms are discussed in relation to questions about cardinality of primes.
236

Some Diophantine Problems

January 2019 (has links)
abstract: Diophantine arithmetic is one of the oldest branches of mathematics, the search for integer or rational solutions of algebraic equations. Pythagorean triangles are an early instance. Diophantus of Alexandria wrote the first related treatise in the fourth century; it was an area extensively studied by the great mathematicians of the seventeenth century, including Euler and Fermat. The modern approach is to treat the equations as defining geometric objects, curves, surfaces, etc. The theory of elliptic curves (or curves of genus 1, which are much used in modern cryptography) was developed extensively in the twentieth century, and has had great application to Diophantine equations. This theory is used in application to the problems studied in this thesis. This thesis studies some curves of high genus, and possible solutions in both rationals and in algebraic number fields, generalizes some old results and gives answers to some open problems in the literature. The methods involve known techniques together with some ingenious tricks. For example, the equations $y^2=x^6+k$, $k=-39,\,-47$, the two previously unsolved cases for $|k|<50$, are solved using algebraic number theory and the ‘elliptic Chabauty’ method. The thesis also studies the genus three quartic curves $F(x^2,y^2,z^2)=0$ where F is a homogeneous quadratic form, and extend old results of Cassels, and Bremner. It is a very delicate matter to find such curves that have no rational points, yet which do have points in odd-degree extension fields of the rationals. The principal results of the thesis are related to surfaces where the theory is much less well known. In particular, the thesis studies some specific families of surfaces, and give a negative answer to a question in the literature regarding representation of integers n in the form $n=(x+y+z+w)(1/x+1/y+1/z+1/w).$ Further, an example, the first such known, of a quartic surface $x^4+7y^4=14z^4+18w^4$ is given with remarkable properties: it is everywhere locally solvable, yet has no non-zero rational point, despite having a point in (non-trivial) odd-degree extension fields of the rationals. The ideas here involve manipulation of the Hilbert symbol, together with the theory of elliptic curves. / Dissertation/Thesis / Doctoral Dissertation Mathematics 2019
237

On the Erdös-Turán conjecture and related results

Xiao, Stanley Yao January 2011 (has links)
The Erdös-Turán Conjecture, posed in 1941 in, states that if a subset B of natural numbers is such that every positive integer n can be written as the sum of a bounded number of terms from B, then the number of such representations must be unbounded as n tends to infinity. The case for h = 2 was given a positive answer by Erdös in 1956. The case for arbitrary h was given by Erdös and Tetali in 1990. Both of these proofs use the probabilistic method, and so the result only shows the existence of such bases but such bases are not given explicitly. Kolountzakis gave an effective algorithm that is polynomial with respect to the digits of n to compute such bases. Borwein, Choi, and Chu showed that the number of representations cannot be bounded by 7. Van Vu showed that the Waring bases contain thin sub-bases. We will discuss these results in the following work.
238

On the Erdös-Turán conjecture and related results

Xiao, Stanley Yao January 2011 (has links)
The Erdös-Turán Conjecture, posed in 1941 in, states that if a subset B of natural numbers is such that every positive integer n can be written as the sum of a bounded number of terms from B, then the number of such representations must be unbounded as n tends to infinity. The case for h = 2 was given a positive answer by Erdös in 1956. The case for arbitrary h was given by Erdös and Tetali in 1990. Both of these proofs use the probabilistic method, and so the result only shows the existence of such bases but such bases are not given explicitly. Kolountzakis gave an effective algorithm that is polynomial with respect to the digits of n to compute such bases. Borwein, Choi, and Chu showed that the number of representations cannot be bounded by 7. Van Vu showed that the Waring bases contain thin sub-bases. We will discuss these results in the following work.
239

Vector Partitions

French, Jennifer 01 May 2018 (has links) (PDF)
Integer partitions have been studied by many mathematicians over hundreds of years. Many identities exist between integer partitions, such as Euler’s discovery that every number has the same amount of partitions into distinct parts as into odd parts. These identities can be proven using methods such as conjugation or generating functions. Over the years, mathematicians have worked to expand partition identities to vectors. In 1963, M. S. Cheema proved that every vector has the same number of partitions into distinct vectors as into vectors with at least one component odd. This parallels Euler’s result for integer partitions. The primary purpose of this paper is to use generating functions to prove other vector partition identities that parallel results of integer partitions.
240

Simplification of radicals with applications to solving polynomial equations.

Zippel, R. E. (Richard E.), 1952- January 1977 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 1977 / Bibliography : leaves 29-30. / M.S. / M.S. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science

Page generated in 0.0514 seconds