• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 87
  • 32
  • 14
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 325
  • 325
  • 105
  • 38
  • 35
  • 35
  • 33
  • 33
  • 33
  • 31
  • 30
  • 27
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Modelling and simulation of turbulence subject to system rotation

Grundestam, Olof January 2006 (has links)
Simulation and modelling of turbulent flows under influence of streamline curvature and system rotation have been considered. Direct numerical simulations have been performed for fully developed rotating turbulent channel flow using a pseudo-spectral code. The rotation numbers considered are larger than unity. For the range of rotation numbers studied, an increase in rotation number has a damping effect on the turbulence. DNS-data obtained from previous simulations are used to perform a priori tests of different pressure-strain and dissipation rate models. Furthermore, the ideal behaviour of the coefficients of different model formulations is investigated. The main part of the modelling is focused on explicit algebraic Reynolds stress models (EARSMs). An EARSM based on a pressure strain rate model including terms that are tensorially nonlinear in the mean velocity gradients is proposed. The new model is tested for a number of flows including a high-lift aeronautics application. The linear extensions are demonstrated to have a significant effect on the predictions. Representation techniques for EARSMs based on incomplete sets of basis tensors are also considered. It is shown that a least-squares approach is favourable compared to the Galerkin method. The corresponding optimality aspects are considered and it is deduced that Galerkin based EARSMs are not optimal in a more strict sense. EARSMs derived with the least-squares method are, on the other hand, optimal in the sense that the error of the underlying implicit relation is minimized. It is further demonstrated that the predictions of the least-squares EARSMs are in significantly better agreement with the corresponding complete EARSMs when tested for fully developed rotating turbulent pipe flow. / QC 20100825
112

Scaling of turbulence and turbulent mixing using Terascale numerical simulations

Donzis, Diego Aaron 09 August 2007 (has links)
Fundamental aspects of turbulence and turbulent mixing are investigated using direct numerical simulations (DNS) of stationary isotropic turbulence, with Taylor-scale Reynolds numbers ranging from 8 to 650 and Schmidt numbers from 1/8 to 1024. The primary emphasis is on important scaling issues that arise in the study of intermittency, mixing and turbulence under solid-body rotation. Simulations up to 2048^3 in size have been performed using large resource allocations on Terascale computers at leading supercomputing centers. Substantial efforts in algorithmic development have also been undertaken and resulted in a new code based on a two-dimensional domain decomposition which allows the use of very large number of processors.Benchmark tests indicate very good parallel performance for resolutions up to 4096^3 on up to 32768 processors. Investigation of intermittency through the statistics of dissipation and enstrophy in a series of simulations at the same Reynolds number but different resolution indicate that accurate results in high-order moments require a higher degree of fine-scale resolution than commonly practiced. At the highest Reynolds number in our simulations (400 and 650) dissipation and enstrophy exhibit extreme fluctuations of O(1000) the mean which have not been studied in the literature before and suggest a universal scaling of small scales. Simulations at Reynolds number of 650 on 2048^3 grids with scalars at Sc=1/8 and 1 have allowed us to obtain the clearest evidence of attainment of inertial-convective scaling in the scalar spectrum in numerical simulations to date whereas results at high Sc support k^{-1} viscous-convective scaling. Intermittency for scalars as measured by the tail of the PDF of scalar dissipation and moments of scalar gradient fluctuations is found to saturate at high Sc. Persistent departures from isotropy are observed as the Reynolds number increases. However, results suggest a return to isotropy at high Schmidt numbers, a tendency that appears to be stronger at high Reynolds numbers. The effects of the Coriolis force on turbulence under solid-body rotation are investigated using simulations on enlarged solution domains which reduce the effects of periodic boundary conditions.
113

Numerical Simulations Of Reinforced Concrete Frames Tested Using Pseudo-dynamic Method

Mutlu, Mehmet Basar 01 July 2012 (has links) (PDF)
Considering the deficiencies frequently observed in the existing reinforced concrete buildings, detailed assessment and rehabilitation must be conducted to avoid significant life and value loss in seismic zones. In this sense, performance based evaluation methods suggested in the regulations and codes must be examined and revised through experimental and analytical research to provide safe and economical rehabilitation solutions. In this study, seismic behavior of three reinforced concrete frames built and tested in Middle East Technical University Structural Mechanics Laboratory is examined. The specimens are extracted from a typical interior frame of 3-story 3-bay reinforced concrete structure. One of the specimens has compliant design according to Turkish Earthquake Code (2007) and each of the other two specimens represents different types of deficiencies in terms of material strength and detailing. The test specimens were modeled using different modeling approaches and nonlinear dynamic analyses were conducted on the numerical models. Results of continuous pseudo-dynamic testing of three ground motions are presented and compared with the numerical simulations on models. Calibrated finite element models were used for evaluation of performance assessment procedure of Turkish Earthquake Code (2007) and further investigation on local deformation components in light of experimental findings and observations. Deformation sources of columns and joints were studied in terms of their interaction and contributions to the total drift. Estimated plastic hinge lengths of columns were compared with the experimental observations and the proposed expressions in the literature.
114

Numerical study for the performance of a methanol micro-channel reformer with Pd/ZnO catalyst.

Jhang, Jhen-ming 11 September 2007 (has links)
Methanol micro-channel reformer is an important device for generating hydrogen to supply micro fuel-cell needs. In the fuel reforming process, the catalyst is adopted to reduce the activation energy and speed up the reforming reaction. Hydrogen and other chemical substance are produced in the reformer catalytic reaction. The micro-channel structure provides more opportunity for molecules of methanol and steam mixture to collide with catalyst for high reforming reaction to take place. The reforming process of methanol in a micro-channel reformer with Pd/ZnO catalyst is studied numerically in this thesis. The effects of various channel length, channel height, inlet velocity, inlet temperature, and catalyst usage (ratio of wall area covered by catalyst) on the performance of reformer (methanol conversion percentage) are investigated numerically. The results show that the methanol conversion increases with increased channel length until a channel length of about 3000£gm, the conversion approaches 100%. The conversion percentage decreases with increased inlet velocity, however, the production rate of hydrogen depends on flow rate and conversion percentage. Increasing the channel height results in decreased methonal conversion due to less collision opportunity with the catalyst. The methanol conversion percentage increases with the increase of the inlet temperature. However, the production rate of the hydrogen starts to descend when the inlet temperature is higher than about 523 K owing to more methonal preburned in raising the inlet temperature. Methanol conversion increases with the catalyst usage. However, it is worth noting that the increase is only about 15% for catalyst usage from 50% to 100%. The results in this study provide design data for the fuel cell system designer.
115

A Numerical Study On Absolute Instability Of Low Density Jets

Chakravorty, Saugata 05 1900 (has links)
A spectacular instability has been observed in low density round jets when the density ratio of jet fluid to ambient fluid falls below a threshold of approximately 0.6. This phenomenon has been observed in non-buoyant jets of helium in air, heated air jets and heated buoyant jets. The oscillation of the flow near the nozzle is extremely regular and periodic and consists of ring vortices. Even the smaller scale structures that appear downstream exhibit similar regularity. A theory for predicting the onset of this oscillation is based on finding regions of absolute instability from linear stability analysis of parallel flow. However, experiments suggest that the theory is at least incomplete and fortuitous as the oscillation is not a linear process. The present work is to observe and understand the process of regeneration of these oscillations by conducting numerical simulations. Here, two-dimensional, plane jets were simulated because they undergo a qualitatively similar process. A spatial and temporal picture of a heated jet has been obtained numerically. A perturbation expansion was used to obtain a system of conservation laws for compressible flows which is valid for low Mach numbers. The low Mach number approximation removes the high frequency acoustic waves from the flow field. This enables a larger time step to be taken without making the calculation unstable. To ensure that all the scales of motion are properly resolved, calculations were done at a low Reynolds number. The governing equations were discretized in space using second-order finite difference formulas on a staggered grid. Velocity fields were advanced using a second-order Adams-Bashforth explicit scheme and then corrected by solving for pressure such that continuity is satisfied at every time step. The Poisson problem for pressure requires the time derivative of the density which was approximated by a third-order backward difference formula. Gauss-Siedel iteration was used to find the pressure. Several numerical tests were conducted prior to simulations of variable density jets to check the stability and accuracy of the code. Two dimensional driven cavity flow calculations were done as a first test. Then a calculation of a forced, spatially developing, incompressible, plane mixing layer was done to check the time accuracy of the code. After obtaining satisfactory performance of the code for the different test cases, two-dimensional, variable density jets were simulated. Since the plane jet extends ad infinitum in the streamwise direction, a sufficiently large domain was used to capture all the relevant physics in the downstream regions of the jet. An advective boundary condition was imposed at the exit plane. Rigid, slipwall conditions were employed to prescribe lateral boundary conditions. A 2-D, incompressible plane jet was simulated first. The jet profile was approximated by two hyperbolic tangent shear layers. The most unstable mode of the inviscid shear layer for this profile, along with its first and second harmonics, was imposed on the velocity profile at the inlet plane. The amplitude of oscillation of the harmonics was chosen so as to provide sufficient energy in the perturbation to accelerate the growth of the layer. No explicit phase lag was introduced in the perturbation. The flow was allowed to develop long enough to wash out the effect of the initial condition. The results obtained for this case indicate that experimentally realized phenomena such as vortex pairing were captured in this simulation. Furthermore, to check the convective nature of instability of the incompressible jet, the forcing at the inlet plane was turned off. The disturbances were gradually convected downstream, out of the computational domain. Next, two-dimensional heated, non-buoyant jets were studied numerically. The effects of the ratio of jet density to ambient density S, the velocity ratio R, and jet width W, on the near field behavior of an initial laminar jet and the regeneration mechanism of the self-sustaining vortices were explored. The theory based on domain of absolute/convective instability identifies these three parameters. No initial perturbation was necessary to start roll-up of the shear layer. For certain choices, e.g., S= 0.75, R = 20, W =10.5, self-sustaining oscillations appeared spontaneously, and these cycles repeated for very long simulation intervals. Waviness on the jet shear layers grow and roll-up into vortices as in constant density shear layers. But unlike the incompressible plane jet, these vortices grow much larger and mixes more with the surrounding fluid. As these vortices evolve, packets of fluid break away as trailing legs similar to side jet expulsions observed in round jets and plumes. The growing vortices disturb the upstream shear layer. Consistently with linear theory, which predicts absolute instability for these parameters, these disturbances are able to grow and roll up. If these disturbances travelled faster than the downstream vortices, it would not be possible for the cycle to repeat. With sufficient shear between the co-flowing streams (R not too small), the entire regeneration process was found to begin from roughly the same streamwise location. Furthermore, it is the symmetric, varicose mode which occurs. At a slightly larger density ratio (S = 0.8, R = 10), self-sustaining oscillations appeared, but each new cycle began slightly farther downstream. It seems likely that these values are close to the boundary in parameter space between self-sustained oscillatory and convectively unstable behaviors. Jet width also influences the selection of these two behaviors. When jet width was reduced, W = 6, even for S = 0.75,R = 20, each new cycle began to shift downstream. For larger jet width (W = 12.3), self-sustaining oscillations occur but the response is now as an asymmetric sinuous mode after a short initial varicose mode. The detailed processes that have now been revealed in plane jets should serve as guidelines for the study of such processes in the technologically more important round jets.
116

Theoretical and Numerical Study of Nonlinear Phononic Crystals

Guerder, Pierre-Yves January 2015 (has links)
This work is dedicated to the theoretical and numerical study of nonlinear phononic crystals. The studied nonlinearities are those due to the second (quadratic) and third (cubic) order elastic constants of the materials that constitute the crystals. Nonlinear effects are studied by the means of finite element methods, used to simulate the propagation of an elastic wave through the crystals. A first research project concerns the study of a bone structure, namely the dispersion of elastic waves in a structure composed of collagen and hydroxy apatite alternate constituent layers. Simulations showed that it exists a strong link between bones hydration and their ability to dissipate the energy. The second study relates to an elastic resonator. A structure composed of steel inclusions in a silica matrix shows a switch behavior when the cubic nonlinearities of steel are taken into account. This strong nonlinear effect appears when the amplitude of the incident wave reaches a threshold. A full analytical model is provided. The last study demonstrates the design of composite materials with both strong cubic nonlinearities and weak quadratic nonlinearities. The derivation of the mixing laws of the elastic parameters of a nonlinear material inside a linear one is performed up to order three. Equations show a strong amplification of the nonlinear parameters of the material for some concentrations. Numerical simulations allow to conclude that the above mentioned resonator can be produced. For this thesis, an innovative tool based on the Discontinuous Galerkin (DG) finite element method is developed for the simulation of elastic wave propagation, in linear and nonlinear systems and in finite and semi-infinite media. The implementation of this DG code for 2D and 3D simulations benefits from the efficient exploitation of modern computer infrastructure (GPU units, clusters) using the property of massive parallelization of DG algorithms. This thesis is part of a joint agreement for an international Ph.D. degree between École Centrale de Lille and the Materials Science and Engineering department of the University of Arizona at Tucson. Ce travail porte sur l'étude théorique et numérique des cristaux phononiques non-linéaires. Les non-linéarités étudiées sont celles dues aux constantes élastiques d'ordre deux (quadratiques) et trois (cubiques) des matériaux constituant les cristaux. Les effets non-linéaires sont étudiés grâce á des méthodes d'éléments finis en simulant la propagation d'une onde élastique á travers les cristaux. Un premier projet de recherche a porté sur l'étude d'une structure osseuse, et plus spécifiquement sur la dispersion des ondes élastiques dans une structure constituée d'une alternance de couches de collagène et d'hydroxy apatite. Les simulations montrent qu'il existe un lien étroit entre l'hydratation des os et leur capacité à dissiper l'énergie. La seconde étude réalisée concerne un résonateur élastique. Une structure constituée d'inclusions d'acier dans de la silice présente un comportement de commutateur (switch) lorsque les non-linéarités cubiques de l'acier sont prises en compte. Cet effet fortement non-linéaire apparaît lorsque l'amplitude de l'onde incidente dépasse un certain seuil. Un modèle analytique complet est fourni. La dernière étude réalisée montre la conception de matériaux composites possédant de fortes non-linéarités cubiques mais de faibles non-linéarités quadratiques. La dérivation des lois de mélange des paramètres élastiques d'un matériau non-linéaire dans un matériau linéaire est effectuée à l'ordre trois. Les équations montrent une forte amplification des paramètres non-linéaires du matériau résultant pour certaines concentrations. Les simulations permettent de conclure que le résonateur mentionné ci-dessus peut effectivement étre réalisé. Pour cette thèse, un outil numérique innovant basé sur la méthode des éléments finis de type Galerkin Discontinu (DG) est développé pour la simulation de la propagation d'ondes élastiques, dans des systèmes linéaires et non-linéaires et dans des milieux finis et semi-infinis. L'implémentation de ce code DG pour des simulations 2D et 3D tire parti des infrastructures de calcul actuelles (processeurs graphiques, clusters) grâce à la propriété de parallélisation massive des algorithmes DG. Cette thèse s'est déroulée dans le cadre d'une cotutelle entre l'École Centrale de Lille et le département de Science et ingénierie des matériaux de l'Université d'Arizona, à Tucson.
117

A new high-order method for direct numerical simulations of turbulent wall-bounded flows

Lenaers, Peter January 2014 (has links)
A new method to perform direct numerical simulations of wall-bounded flows has been developed and implemented. The method uses high-order compact finite differences in wall-normal (for channel flow) or radial direction (for pipe flow) on a collocated grid, which gives high-accuracy results without the effectfof filtering caused by frequent interpolation as required on a staggered grid. The use of compact finite differences means that extreme clustering near the wall leading to small time steps in high-Reynolds number simulations is avoided. The influence matrix method is used to ensure a completely divergence-freesolution and all systems of equations are solved in banded form, which ensures an effcient solution procedure with low requirements for data storage. The method is unique in the sense that exactly divergence-free solutions on collocated meshes are calculated using arbitrary dffierence matrices. The code is validated for two flow cases, i.e. turbulent channel and turbulent pipe flow at relatively low Reynolds number. All tests show excellent agreement with analytical and existing results, confirming the accuracy and robustness ofthe method. The next step is to eciently parallelise the code so that high-Reynolds number simulations at high resolution can be performed. We furthermore investigated rare events occurring in the near-wall region of turbulent wall-bounded flows. We find that negative streamwise velocities and extreme wall-normal velocity uctuations are found rarely (on the order of 0:01%), and that they occur more frequently at higher Reynolds number. These events are caused by strong vortices lying further away from the wall and it appears that these events are universal for wall-bounded flows. / <p>QC 20150303</p>
118

Membrane-based nanocalorimetry for low temperature studies with high resolution and absolute accuracy

Tagliati, Stella January 2011 (has links)
A differential, membrane-based nanocalorimeter has been designed and constructed for thermal studies of mesoscopic samples at low temperatures. The calorimeter is intended for sample masses from mg to sub-μg and a broad temperature range from above room temperature down to the sub-K region. It allows concurrent use of ac steady state and relaxation methods. Effort was spent to achieve good absolute accuracy to enable investigations of the electronic contribution to the heat capacity of superconductors. The calorimeter consists of a pair of cells, each of which is a stack of heaters and thermometer in the center of a silicon nitride membrane, in total giving a background heat capacity less than 100 nJ/K at 300 K, decreasing to 10 pJ/K at 1 K. The device has several distinctive features: i) The resistive thermometer, made of a GeAu alloy, displays a high sensitivity, dlnR/dlnT ≈ −1 over the entire temperature range. ii) The sample is placed in direct contact with the thermometer, which is allowed to self-heat. The thermometer can thus be operated at high dc current to increase the resolution. iii) Data are acquired with a set of eight synchronized lock-in amplifiers measuring dc, 1st and 2nd harmonic signals of heaters and thermometer. iv) Absolute accuracy is achieved via a novel variable-frequency fixed-phase technique in which the measurement frequency is automatically adjusted during ac-calorimetry measurements to account for the temperature variation of the sample specific heat and the device thermal conductance. The properties of the empty cell and the effect of the thermal link between sample and cell were analytically studied. Practical expressions for describing the frequency dependence of heat capacity, thermal conductance, and temperature oscillation amplitude of the system were formulated. Comparisons with measurements and numerical simulations show excellent agreement. Calibration procedures are simple, but care should be taken to minimize thermal radiation effects. The experimental setup is operated with self-regulation of heater powers and thermometer bias, including compensation to zero the differential dc signal. As a result its high resolution and compact format, the calorimeter is well suited for studies of phase transitions and phase diagrams as well as electronic specific heat. The performance of the device is demonstrated by a study of the superconducting state of a small lead crystal. / En differentiell, membran-baserad nanocalorimeter har designats och tillverkats för termiska studier av mesoskopiska prover vid låg temperatur. Kalorimetern är avsedd för provmassor från mg till sub-μg och ett brett temperaturområde från över rumstemperatur till under 1 K. Den tillåter samtidig användning av både ac steady state och relaxations-metod. Fokus har lagts på att uppnå en god absolut noggrannhet för att möjliggöra studier av det elektroniska bidraget till värmekapaciteten hos supraledare. Kalorimetern består av två celler, var och en uppbyggd som en stack med värmeelement och termometer i mitten av ett kiselnitrid-membran, med en total bakgrundsvärmekapacitet på mindre än 100 nJ/K vid 300 K, minskande till 10 pJ/K vid 1 K. Kalorimetern har flera särdrag: i) Den resistiva termometern, gjord av en GeAu legering, visar en hög känslighet, dlnR/dlnT ≈ −1 över hela temperaturområdet. ii) Provet placeras i direkt kontakt med termometern, som tillåts att självvärma. Termometern kan alltså användas vid hög dc ström för att öka upplösningen. iii) Mätningarna genomförs med en uppsättning av åtta synkroniserade lock-in förstärkare, som mäter dc, grundfrekvens och 1:a övertonen hos värme-element och termometer. iv) Absolut noggrannhet uppnås genom en ny variabel-frekvens konstant-fas teknik där mätfrekvensen justeras automatiskt under ac-kalorimetrimätningar för att kompensera temperaturberoendet hos provets specifika värmekapacitet och kalorimetercellens värmeledningsförmåga. Egenskaperna hos den tomma cellen och inverkan av den termiska länken mellan prov och cell studerades analytiskt. Praktiska uttryck för att beskriva frekvens beroendet hos systemets värmekapacitet, värmeledningsförmåga, och temperaturoscillationer har formulerats. Jämförelser mellan mätningar och numeriska simuleringar visar mycket bra överensstämmelse. Kalibreringsförfarandet är enkelt, men försiktighet bör vidtas för att minimera värmestrålningseffekter. Experimentuppställningen drivs med självreglering av värmare och termometer, inklusive kompensation för att nollställa den differentiella dc signalen. Som en följd av dess höga upplösning och kompakta format är kalorimetern väl lämpad för studier av fasövergångar och fasdiagram såväl som det elektroniska specifika värmet. Kalorimeterns prestanda demonstreras genom en studie av det supraledande tillståndet hos en liten blykristall. / At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Accepted.
119

Seismické a lokální účinky (analýza dat a modelování) / Seismic Site Effects (Data Analysis and Modelling)

Caserta, Arrigo January 2011 (has links)
A comprehensive study of the soil shaking under the seismic wave-field ex- citation is presented. It includes theoretical, geological, geotechnical, data analysis and numerical simulations aspects. The aim is to quantify the main parameters allowing the estimate of the soil shaking in urban areas for better mitigating seismic risk due to future earthquakes. The city of Rome has been chosen as a case study because of its high density of popula- tion and large concentration of historical monuments with high earthquake vulnerability. This study improves significantly the knowledge concerning the detailed near-surface geology of the chosen study area of Rome, ful- fills the absence both of knowledge concerning its geotechnical properties and earthquake data recordings in the city. Among others, it allows for a better explanation of the spatial damage pattern observed in the city due to earthquakes in the past. The main innovations include the construction and long-term operation a seismic array in the city, analysis of the natural seismic noise, and instrumental recordings of the 2009 L'Aquila earthquake sequence. The 3D array (including a borehole sensor at 70-m depth) is the first one in Italy planned, realized and operated within an urban area, and the first one that recorded a significant earthquake in...
120

Production of state-selected H2+ ions and numerical simulations of sympathetic cooling in RF traps / Production de source sélectives des ions H2+ et simulations numériques de refroidissement sympathique dans les pièges de radio fréquence

Sillitoe, Nicolas 16 November 2017 (has links)
La spectroscopie ro-vibrationelle de haute résolution de l’ion moleculaire H2+ par REMPD requiert une source sélective en état interne. Dans cette thèse nous présentons notre travail de conception et de réalisation d’une telle source utilisant la photo-ionisation multiphotonique résonante (REMPI) de H2 à l’aide d’un laser pulsé à 303 nm.Dans un deuxième temps nous présentons nos simulations numériques de refroidissement sympathique dans un piège de Paul linéaire, avec pour application principale le projet GBAR qui implique le refroidissement sympathique d’un ion d’antimatière H̄+ par des ions Be+ refroidis par laser. Nous avons dévelopé un code GPU utilisant un pas de temps variable permettant de décrire les interactions coulombiennes de façon efficace. Nous discutons de l’influence du chauffage RF et de lois d’échelles entre le temps de capture, l’énergie initiale et le nombre d’ions dans le cristal. Nous montrons que le refroidissement sympathique de H̄ requis pour GBAR pourrait fonctionner avec un cristal dissymétrique de Be+/HD+ qui semble plus efficace que le Be+ seul. Nous montrons qu’avec un tel cristal la capture du H̄+ pourrait être détectée expérimentalement par analyse de Fourier des données de fluorescence. / The high-resolution ro-vibrational spectroscopy of the H2+ molecular ion by resonance-enhanced multiphoton dissociation (REMPD) requires a state-selective source of H2+. In this thesis we present work on a functional state selective H2+ ion source using resonance enhanced multiphoton ionisation (REMPI) with a 303 nm pulsed laser.The second part of the thesis presents numerical simulations of sympathetic cooling in linear RF traps, whose main application is the GBAR project (Gravitational Behaviour of Antihydrogen at Rest) which involves sympathetic cooling of an antimatter H̄+ ion by laser-cooled Be+ ions. We developed a GPU code using a variable timestep technique enabling a fast description of Coulomb interactions. We discuss the influence of RF heating and scaling laws between cooling times, initial energy and ion numbers in the cooling crystal. We show that the H̄ sympathetic cooling step of GBAR could be feasible using a rotationally asymmetric two-component Be+/HD+ crystal which appears more effective than a single-component Be+ crystal. We find that the H̄+ ion’s capture by this crystal could be detected experimentally by Fourier analysis of the fluorescence data.

Page generated in 0.5178 seconds