• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A ROM-less DDFS Using A Parabolic Polynomial Interpoltion Method with An Offset Adjustment and Fabrication of Silcon-based OEIC Comprising Photodetector and Transimpedance Amplifier

Lee, Chia-Chuan 14 July 2008 (has links)
This thesis includes two topics. The first topic is a ROM-less DDFS (Direct Digital Frequency Synthesizer) using a parabolic polynomial in-terpolation method with an offset adjustment. The second one is the de-sign and fabrication of a silicon-based OEIC(optoelectronic integrated circuit) comprising photodetectors and transimpedance amplifiers. The ROM-less DDFS employs a parabolic polynomial interpola?tion method with an offset adjustment, where an initial phase offset is added into parabolic polynomials. Besides, the pipelining architecture is adopted to improve the speed of the proposed DDFS. The OEIC uses the hybrid integration technique to integrate the III-V optoelectronic devices (photodetector) and CMOS integrated circuits (transimpedance amplifier) onto the same substrate (silicon substrate) by the wafer bounding technique. With the realization of the hybrid in-tegration, the bandwidth degeneration resulted from the traditional wire bounding can be avoided.
2

Design and Characterization of Silicon-on-Insulator Passive Polarization Converter with Finite-Element Analysis

Deng, Henghua January 2005 (has links)
As optical fiber systems evolve to higher data rates, the importance of polarization control and manipulation steadily increases. Polarization manipulating devices, such as polarization splitters and converters, can be realized by introducing material anisotropy or geometric asymmetry. Compared to active devices, passive polarization converters are more simply fabricated and controlled; therefore they have attracted increasing attention during the past two decades. However, materials employed in previous polarization rotating waveguides are mainly limited to low index-contrast III-V semiconductors such as InP and GaAs. Such III-V devices possess large radiation loss, large curvature loss, and low coupling efficiency to single-mode fibers; in addition, due to the weak optical confinement, the device spacing has to be large, which prevents high-density and large-scale integration in optoelectronic integrated circuits (OEIC) and planar lightwave circuits (PLC). <br /><br /> In this dissertation, the silicon-on-insulator (SOI) technology is introduced to the design and fabrication of passive polarization rotators (PR). Efficient and accurate full-vectorial finite-element eigenmode solvers as well as propagation schemes for characterizing novel SOI PRs are developed because commercial software packages based on finite-difference techniques are inefficient in dealing with arbitrary waveguide geometries. <br /><br /> A set of general design procedures are accordingly developed to design a series of slanted-angle polarization converters, regardless of the material system (SOI or III-V), outer-slab layer configuration (symmetric or asymmetric), and longitudinal loading (single- or multi-section). In particular, our normalized design charts and simple empirical formula for SOI polarization converters are applicable to a wide range of silicon-guiding-film thickness, e. g. , from 1 to 30 &mu;m, enabling fast and accurate polarization rotator design on most commercial SOI wafers. With these procedures, in principle 100% polarization conversion efficiency can be achieved by optimizing waveguide geometric parameters. <br /><br /> A novel configuration with asymmetric external waveguiding layers is proposed, which is advantageous for fabrication procedure, manufacturing tolerance, single-mode region, and conversion efficiency. By etching along the crystallographic plane, the angled-facet can be perfectly fabricated. Completely removing external waveguiding layer beside the sloped sidewall not only simplifies production procedures but also enhances fabrication tolerances. <br /><br /> To accurately and efficiently characterize asymmetric slanted-angle SOI polarization converters, adaptive mesh generation procedures are incorporated into our finite-element method (FEM) analysis. In addition, anisotropic perfectly-matched-layer (PML) boundary condition (BC) is employed in the beam propagation method (BPM) in order to effectively suppress reflections from the edges of the computation window. For the BPM algorithm, the power conservation is strictly monitored, the non-unitarity is thoroughly analyzed, and the inherent numerical dissipation is reduced by adopting the quasi-Crank-Nicholson scheme and adaptive complex reference index. <br /><br /> Advantages of SOI polarization rotators over III-V counterparts are studied through comprehensive research on power exchange, single-mode condition, fabrication tolerance, wavelength stability, bending characteristics, loss and coupling properties. The performance of SOI PRs is stable for wavelengths in the ITU-T <em>C</em>-band and <em>L</em>-band, making such devices quite suitable for DWDM applications. Due to the flexible cross-section of SOI polarization converters, the coupling loss to laser diodes and single mode fibers (SMF) can be designed to be very small and can be further reduced by a tapered waveguide with cross-sections always satisfying the single-mode criteria. Slanted-angle SOI polarization rotators display asymmetric bending characteristics and permit extremely small curvatures with negligible radiation loss when the angled-facet is located at the outer bend radius. Moreover, SOI polarization rotators can be manufactured with low-price processing techniques that are fully compatible with CMOS integrated circuits (IC) technology, and thus can be integrated on both photonic and electronic chips. <br /><br /> Experimental verifications have shown good agreement with theoretical analysis and have confirmed the promising characteristics of our novel asymmetric SOI polarization converters. Similar asymmetric-outer-slab geometry has recently been employed by peer researchers to fabricate high performance III-V polarization rotators. We therefore believe that results in this dissertation will contribute much to related research fields.
3

Design and Characterization of Silicon-on-Insulator Passive Polarization Converter with Finite-Element Analysis

Deng, Henghua January 2005 (has links)
As optical fiber systems evolve to higher data rates, the importance of polarization control and manipulation steadily increases. Polarization manipulating devices, such as polarization splitters and converters, can be realized by introducing material anisotropy or geometric asymmetry. Compared to active devices, passive polarization converters are more simply fabricated and controlled; therefore they have attracted increasing attention during the past two decades. However, materials employed in previous polarization rotating waveguides are mainly limited to low index-contrast III-V semiconductors such as InP and GaAs. Such III-V devices possess large radiation loss, large curvature loss, and low coupling efficiency to single-mode fibers; in addition, due to the weak optical confinement, the device spacing has to be large, which prevents high-density and large-scale integration in optoelectronic integrated circuits (OEIC) and planar lightwave circuits (PLC). <br /><br /> In this dissertation, the silicon-on-insulator (SOI) technology is introduced to the design and fabrication of passive polarization rotators (PR). Efficient and accurate full-vectorial finite-element eigenmode solvers as well as propagation schemes for characterizing novel SOI PRs are developed because commercial software packages based on finite-difference techniques are inefficient in dealing with arbitrary waveguide geometries. <br /><br /> A set of general design procedures are accordingly developed to design a series of slanted-angle polarization converters, regardless of the material system (SOI or III-V), outer-slab layer configuration (symmetric or asymmetric), and longitudinal loading (single- or multi-section). In particular, our normalized design charts and simple empirical formula for SOI polarization converters are applicable to a wide range of silicon-guiding-film thickness, e. g. , from 1 to 30 &mu;m, enabling fast and accurate polarization rotator design on most commercial SOI wafers. With these procedures, in principle 100% polarization conversion efficiency can be achieved by optimizing waveguide geometric parameters. <br /><br /> A novel configuration with asymmetric external waveguiding layers is proposed, which is advantageous for fabrication procedure, manufacturing tolerance, single-mode region, and conversion efficiency. By etching along the crystallographic plane, the angled-facet can be perfectly fabricated. Completely removing external waveguiding layer beside the sloped sidewall not only simplifies production procedures but also enhances fabrication tolerances. <br /><br /> To accurately and efficiently characterize asymmetric slanted-angle SOI polarization converters, adaptive mesh generation procedures are incorporated into our finite-element method (FEM) analysis. In addition, anisotropic perfectly-matched-layer (PML) boundary condition (BC) is employed in the beam propagation method (BPM) in order to effectively suppress reflections from the edges of the computation window. For the BPM algorithm, the power conservation is strictly monitored, the non-unitarity is thoroughly analyzed, and the inherent numerical dissipation is reduced by adopting the quasi-Crank-Nicholson scheme and adaptive complex reference index. <br /><br /> Advantages of SOI polarization rotators over III-V counterparts are studied through comprehensive research on power exchange, single-mode condition, fabrication tolerance, wavelength stability, bending characteristics, loss and coupling properties. The performance of SOI PRs is stable for wavelengths in the ITU-T <em>C</em>-band and <em>L</em>-band, making such devices quite suitable for DWDM applications. Due to the flexible cross-section of SOI polarization converters, the coupling loss to laser diodes and single mode fibers (SMF) can be designed to be very small and can be further reduced by a tapered waveguide with cross-sections always satisfying the single-mode criteria. Slanted-angle SOI polarization rotators display asymmetric bending characteristics and permit extremely small curvatures with negligible radiation loss when the angled-facet is located at the outer bend radius. Moreover, SOI polarization rotators can be manufactured with low-price processing techniques that are fully compatible with CMOS integrated circuits (IC) technology, and thus can be integrated on both photonic and electronic chips. <br /><br /> Experimental verifications have shown good agreement with theoretical analysis and have confirmed the promising characteristics of our novel asymmetric SOI polarization converters. Similar asymmetric-outer-slab geometry has recently been employed by peer researchers to fabricate high performance III-V polarization rotators. We therefore believe that results in this dissertation will contribute much to related research fields.
4

Investigation of Integrated Circuits for High Datarate Optical Links

Chun, Carl S. P.(Shun Ping) 24 November 2004 (has links)
Because of the need to move large amounts of data effienciently, optical based communications are a critical component of modern telecommunications. And as a key enabler of optical communications, electrical components play a critical role in optical data links. Optoelectronic integrated circuits provide the bridge between the optical and electrical realms. Electronic integrated circuits are also integral parts of the optical link, interfacing with post processing circuitry and compensating for any limitations along the link. In this investigation, three circuits for optical data link applications are studied. Two optoelectronic integrated circuit front-ends for freespace and long haul applications, respectively and an active filter for near end cross talk cancellation associated with high data rate transmission. The first circuit is an 8x8 monolithic receiver array for a Spatial Division Multiplexing optical link. A compact and low power 8x8 array was designed and demonstrated a channel that received data at rates of 1Gb/s. It is the first completely monolithic demonstration of a 2D receiver array within a conventional ion implanted GaAs MESFET process. The second circuit demonstrated a long wavelength (1.55 m) optoelectronic receiver for long haul applications. The circuit utilized a TWA topology, which maximizes the available bandwidth from the GaAs MESFET process. It incorporated a thin-film inverted MSM photodetector to achieve nearly monolithic integration. The final circuit is a tunable high pass active filter in 0.18 m CMOS technology. As part of a NEXT noise canceller architecture, it will provide the means to extend data transmission in FR-4 legacy backplanes into the tens of Gb/s datarate.
5

Photodiode UTC et oscillateur différentiel commandé en tension à base de TBdH InP pour récupération d'horloge dans un réseau de transmission optique à très haut débit

Withitsoonthorn, Suwimol 04 June 2004 (has links) (PDF)
L'intégration optoélectronique d'un récepteur dans une transmission sur fibre optique concerne l'assemblage de trois principales fonctions : la photodétection, la récupération d'horloge et la régénération des données. Cette thèse contribue au développement d'un tel concept avec, d'une part, l'étude d'une structure de photodiode appelée UTC (Uni-Travelling Carrier) compatible avec le transistor bipolaire à double hétérojonction (TBdH), et d'autre part, la réalisation dans cette même technologie TBdH d'un oscillateur commandé en tension ou VCO (Voltage-Controlled Oscillator) pour la récupération d'horloge et des données à 40 et 43 Gbit/s. La photodiode UTC présente de très bonnes performances en bande passante et en courant de saturation par rapport à la photodiode PIN classique. La première partie de ce travail présente une étude approfondie de la structure UTC ainsi que son intégration avec la structure TBdH sur substrat InP. La compatibilité entre ces deux structures a été validée avec quelques critères à respecter. En particulier, le dopage et l'épaisseur de la base constituent les principaux compromis entre la sensibilité et la rapidité du dispositif. Le VCO de type différentiel permettra, après intégration dans une boucle à verrouillage de phase ou PLL (Phase-Locked Loop), de générer un signal stable fournissant deux phases d'horloge complémentaires aux circuits numériques, notamment au circuit de décision utilisé pour la régénération des données. L'architecture « à varactor interne » choisie offre un fort potentiel pour la réalisation des VCO de très hautes fréquences. Le circuit VCO réalisé au cours de cette thèse présente de bonnes performances en plage d'accord (10%) autour de la fréquence d'oscillation de 45 GHz. La précision de cette fréquence est liée aux modèles du transistor et de la ligne coplanaire utilisés dans la simulation, ainsi qu'à la reproductibilité technologique. Ces résultats permettent de franchir une étape importante et nécessaire à la réalisation d'un récepteur monolithique à base de TBdH InP pour les applications à très haut débit.

Page generated in 0.0217 seconds