• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 36
  • 23
  • 23
  • 20
  • 10
  • 8
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 266
  • 86
  • 64
  • 54
  • 41
  • 39
  • 35
  • 35
  • 35
  • 32
  • 24
  • 24
  • 22
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Etude théorique et expérimentale de µ-OLEDs en régime impulsionnel à très haute densité de courant / Experimental and theoretical study of μ-OLEDs in pulsed regime under high current densities

Zeng, Lei 20 October 2016 (has links)
Ce travail de thèse porte sur l’estimation de la possibilité d’atteindre le seuil laser dans un matériau organique par pompage électrique. Dans le but ultime de réaliser le laser organique à pompage électrique, un prérequis est d’injecter une haute densité de courant dans un dispositif électroluminescent fonctionnel. Dans un premier temps, le comportement de l’OLED soumise à haute densité de courant est simulé et un modèle d’estimation de seuil laser basé sur la matrice de transfert est proposé. Ces études théoriques indiquent l’existence d’une densité de population maximale d’excitons radiatives au début d’injection de courant et estime la nécessité de 8.7×1016 cm-3 au seuil laser. Ensuite, la caractéristique résolue en temps des μ-OLED à base d’Alq3 : DCM excitées par des impulsions électriques de courtes durées (< 100 ns) et à faible taux de répétition (10 Hz) sont étudiées à l’aide d’un système de microscope confocal calibré. Les caractéristiques de l’OLED sont en bon accord avec les simulations théoriques. Une densité de courant de 3.6 kA/cm² et un pic de luminance de 8.4×106 cd/m² ont été obtenus en injectant des impulsions de 30 ns. Le pic de luminance correspond à une densité de population de 3.6×1017 cm-3, soit supérieure au plus petit seuil laser en littérature. Il est donc possible de réaliser le laser dans cette fenêtre de temps de quelques nanosecondes. / This thesis focus on the estimation of the possibility to achieve the laser threshold in an organic material with electrical pumping. As the ultimate goal is to demonstrate an electrically pumped organic laser, attaining high current density in a working electroluminescent device is pre-required. At first, the response of OLED at high current injection condition is simulated with a theoretical model. And the laser threshold estimation is performed by transfer matrix method. These theoretical studies show that a peak of emissive exciton (singlet) population density should exist at pulse onset, while a population density of 8.7×1016 cm-3 is necessary for lasing. Next, the time-resolved characteristics of μ-OLED based on Alq3 : DCM excited by short (< 100 ns) electrical pulses with low repetition rate (10 Hz) have been studied on the calibrated confocal microscope. The response of μ-OLED is in good agreement with the theoretical simulations. A current density of 3.6 kA/cm² and a luminance peak of 8.4×106 cd/m² have been achieved with 30-ns pulses. This luminance peak corresponds to singlet population density of 3.6×1017 cm-3, which is higher than the smallest laser threshold in literature. We suggest that it is possible to achieve laser effect in the time window of several nanoseconds at pulse onset.
32

Ladungsträger- und Anregungsdynamik in halbleitenden Polymerschichten mit eingemischten Emittern und Ladungsträgerfallen / Charge and excitation dynamics in semiconducting polymer layers doped with emitters and charge carrier traps

Jaiser, Frank January 2006 (has links)
In Leuchtdioden wird Licht durch die Rekombination von injizierten Ladungsträgern erzeugt. Das kann einerseits in anorganischen Materialien geschehen. In diesem Fall ist es notwendig, hochgeordnete Kristallstrukturen herzustellen, die die Eigenschaften der Leuchtdioden bestimmen. Ein anderer Ansatz ist die Verwendung von organischen Molekülen und Polymeren. Auf Grund der Vielseitigkeit der organischen Chemie können die Eigenschaften der verwendeten halbleitenden Polymere schon während der Synthese beeinflusst werden. Außerdem weisen auch diese Polymere die bekannte mechanische Flexibilität auf. Die Herstellung von flexiblen, großflächigen Beleuchtungsquellen und Anzeigelementen ist so möglich.<br> Die erste Leuchtdiode mit einem halbleitenden Polymer als Emitter wurde 1990 hergestellt. Seither hat das Forschungsgebiet eine rasante Entwicklung genommen. Auch erste kommerzielle Produkte sind erhältlich. Im Zuge dieser Entwicklung wurde deutlich, dass die Eigenschaften von polymeren Leuchtdioden – beispielsweise Farbe und Effizienz – durch die Verwendung mehrerer Komponenten in der aktiven Schicht deutlich verbessert werden können. Gleichzeitig ergeben sich neue Herausforderungen durch die Wechselwirkungen der verschiedenen Filmbestandteile. Während die Komponenten oft entweder zur Verbesserung des Ladungstransportes oder zur Beeinflussung der Emission zugegeben werden, muss darauf geachtet werden, dass die anderen Prozesse nicht negativ beeinflusst werden. In dieser Arbeit werden einige dieser Wechselwirkungen untersucht und mit einfachen physikalischen Modellen erklärt.<br> So werden zunächst blau emittierende Leuchtdioden auf der Basis von Polyfluoren untersucht. Dieses Material ist zwar ein sehr effizienter blauer Emitter, jedoch ist es anfällig für chemische Defekte, diese sich nicht vollständig verhindern lassen. Die Defekte bilden Fallenzustände für Elektronen, ihr Einfluss lässt sich durch die Zugabe von Lochfallen unterdrücken. Der zugrunde liegende Prozess, die Beeinflussung der Ladungsträgerbalance, wird erklärt. Im Folgenden werden Mischsystemen mit dendronisierten Emittern, die gleichzeitig eine Falle für Elektronen bilden, untersucht. Hier wird die unterschiedliche Wirkung der isolierenden Hülle auf die Ladungs- und Energieübertragung zwischen Matrix und Farbstoffkern der Dendrimere untersucht. In Mischsystemen haben die Natur der angeregten Zustände sowie die Art und Weise des Ladungsträgertransportes einen großen Einfluss auf diese Transferprozesse. Außerden hat auch hier die Ladungsträgerbalance Auswirkungen auf die Emission. Um den Ladungsträgereinfang in Fallenzuständen zu charakterisieren, wird eine Methode auf Grundlage der Messung des zeitaufgelösten Photostroms in organischen Mischfilmen weiterentwickelt. Die erzielten Ergebnisse zeigen, dass die Übertragung der für geordnete Systeme entwickelten Modelle des Ladungsträgertransportes nicht ohne weiteres auf Polymersysteme mit hoher Unordnung übertragen werden können. Abschließend werden zeitaufgelöste Messungen der Phosphoreszenz in entsprechenden Mischungen aus Polymeren und organometallischen Verbindungen vorgestellt. Auch diese Systeme enthalten üblicherweise weitere Komponenten, die den Ladungstransport verbessern. In diesen Filmen kann es zu einer Übertragung der Tripletts vom Emitter auf die weiteren Filmbestandteile kommen. Bei Kenntnis der in Frage kommenden Wechselwirkungen können die unerwünschten Prozesse vermieden werden. / Light-emitting diodes generate light from the recombination of injected charge carriers. This can be obtained in inorganic materials. Here, it is necessary to produce highly ordered crystalline structures that determine the properties of the device. Another possibility is the utilization of organic molecules and polymers. Based on the versatile organic chemistry, it is possible to tune the properties of the semiconducting polymers already during synthesis. In addition, semiconducting polymers are mechanically flexible. Thus, it is possible to construct flexible, large-area light sources and displays.<br> The first light-emitting diode using a polymer emitter was presented in 1990. Since then, this field of research has grown rapidly up to the point where first products are commercially available. It has become clear that the properties of polymer light-emitting diodes such as color and efficiency can be improved by incorporating multiple components inside the active layer. At the same time, this gives rise to new interactions between these components. While components are often added either to improve the charge transport or to change the emission, it has to made sure that other processes are not influenced in a negative manner. This work investigates some of these interactions and describes them with simple physical models.<br> First, blue light-emitting diodes based on polyfluorene are analyzed. This polymer is an efficient emitter, but it is susceptible to the formation of chemical defects that can not be suppressed completely. These defects form electron traps, but their effect can be compensated by the addition of hole traps. The underlying process, namely the changed charge carrier balance, is explained. In the following, blend systems with dendronized emitters that form electron traps are investigated. The different influence of the insulating shell on the charge and energy transfer between polymer host and the emissive core of the dendrimers is examined. In the blend, the nature of the excited states as well as the method of the charge transport through the layer are of great importance to the transfer. Again, the charge carrier balance influences the emission. To characterize the trapping of charges in trap states, a method based on the measurement of transient photocurrents is enhanced. The results show that models developed for ordered systems can not simply be transferred to polymer systems with a high degree of disorder. Finally, time-resolved measurements of the phosphorescence decay in blends of polymers with organo-metallic compounds are shown. Usually, these systems contain more components that facilitate charge transport. Thus, triplets may be transferred from the phosphorescent dye other components of the film. Knowing the underlying interactions, unwanted processes can be suppressed.
33

The Optical Outcoupling of Organic Light Emitting Diodes

Hill, Duncan 06 August 2008 (has links) (PDF)
OLEDs have seen a strong growth in development in recent years, however up to 80% of emitted light may be lost within the OLED stack and in the substrate layers. This thesis investigates the effects of the layer stack on the OLED properties and also studies a number of approaches to substrate structuring and treatment in order to couple light from the devices.
34

The Study of High Efficiency White Organic Light Emitting Devices with Tandem Structure

Lu, Kun-da 18 August 2010 (has links)
We have developed high-brightness white organic light-emitting diodes (OLEDs), which contain a tandem structure with two white electroluminescent (EL) units featuring a doping system comprised by a blue light-emitting host material [1,3,5-tris(1-pyrenyl)benzene (TPB3)] and a red light-emitting guest material[4-(dicyanomethylene) -2-tert-butyl -6-(1,1,7,7tetramethyljulolidyl-9-enyl)-4H-pyran(DCJTB)].In this study, we used Li doped[tris(8-hydroxyquinoline)aluminum (Alq3)] as the n-type connecting unit and MoO3 as the p-type connecting unit. We adjust the conceration of Li in the n-type connecting unit, try to find the best power efficiency.In the end,we find the 24% Li doped[tris(8-hydroxyquinoline)aluminum (Alq3)] as n-type connecting unit is the best conceration.A tandem device having the configuration ITO (140 nm)/NPB (65 nm)/ TPB3 (30 nm)¡GDCJTB (0.05%)/ Alq3(30 nm)/Alq3 (20 nm)¡GLi ( 24 %)/MoO3 (5 nm)/NPB (65 nm)/TPB3 (30 nm)¡GDCJTB (0.05%)/Alq3 (30 nm)/LiF (0.8 nm)/Al (200 nm) ,which exhibited a maximum luminance of 72100 cd/m2, a maximum power efficiency of 3.44 lm/W at 8V, a maximum external quantum efficiency of 4.72% at 20V.The Color Rendering Index(CRI) reached to 79,and the Commission Internationale DeL¡¦Eclairage chromaticity coordinates were (0.35, 0.35)at 26 V.We attribute the high-brightness of this system to the efficient white EL units and connenting layers.
35

The Study of White Polymer Light-emitting Device

Hung, Chian-Yi 17 January 2008 (has links)
In this study, we investigated optoelectronic properties of white polymer light-emitting diodes. In the first part, we studied the energy transfer mechanism between the host material BP105 and the guest material RP119. By controlling the concentration of the dopant material, with the configuration of ITO/PEDOT:PSS/BP105:RP119/LiF/Al, we achieved the max luminance of 11580 cd/m2,luminance efficiency of 3.07cd/A with the CIE coordinate of (0.34, 0.36). In the second part, we added glycerol into HTL(Hole Transporting Layer) in order to enhance the conductivity. The structure of the device is ITO/glycerol:PEDOT:PSS/BP105:RP119(100:2)/LiF/Ca/Al, and the max luminance is 16040cd/m2, the luminance efficiency is 3.46cd/A,CIE coordinate is (0.34, 0.36). The luminance of the device with glycerol was 40% increased, the efficiency increased up to 13%. The CIE coordinate keep at (0.34, 0.36) between 9 and 14 voltage.
36

Organische Leuchtdioden aus Polymeren und niedermolekularen Verbindungen für grossflächige OLED-Anzeigen

Kammoun, Anis January 2008 (has links)
Zugl.: Braunschweig, Techn. Univ., Diss., 2008
37

Organic light-emitting diodes with doped charge transport layers

Blochwitz, Jan. Unknown Date (has links) (PDF)
Techn. University, Diss., 2001--Dresden.
38

Use of Hole and Electron Impeding layers to Improve the Efficiency of Organic Light Emitting Diodes

Bhandari, Nikhil K. 02 November 2009 (has links)
No description available.
39

Implementation of ‘Hole confinement’ for efficient Inverted and un-doped bi-layer Organic Light Emitting Diodes using a buffer layer

Subramanian, Arunkumar 23 September 2011 (has links)
No description available.
40

White Organic Light Emitting Diodes

Rosenow, Thomas 07 April 2011 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit drei Ansätzen der hocheffizienten Erzeugung von weißem Licht mit organischen Leuchtdioden (OLEDs) auf der Basis kleiner Moleküle. Ein Ansatz kombiniert die Emission eines fluoreszenten und zweier phosphoreszenter Emitter in einer einzelnen Emissionsschicht. Da das Triplettniveau des verwendeten Blauemitters niedriger ist als die Triplettniveaus der phosphoreszenten Emitter, werden die Konzentrationen der Emitter so gewählt, dass ein Exzitonenübertrag zwischen ihnen unterbunden wird. Die strahlungslose Rekombination von Tripletts auf dem fluoreszenten Blauemitter begrenzt die Effizienz dieses Ansatzes, jedoch besticht die resultierende weiße OLED durch eine bemerkenswerte Farbstabilität. Der zweite Ansatz basiert auf dem “Triplet Harvesting” Konzept. Ansonsten ungenutzte Triplett Exzitonen werden von einem fluoreszenten Blauemitter auf phosphoreszente Emitter übertragen, wodurch interne Quanteneffizienzen bis zu 100 % möglich sind. Der zur Verfügung stehende Blauemitter 4P-NPD erlaubt aufgrund seines niedrigen Triplettniveaus nicht den Triplett übertrag auf einen grünen Emitter. Daher wird das “Triplet Harvesting” auf zwei unterschiedliche phosphoreszente Emitter, anhand des gelben Emitters Ir(dhfpy)2acac und des roten Emitters Ir(MDQ)2acac untersucht. Es wird gezeigt, dass beide phosphoreszente Emitter indirekt durch Exzitonendiffusion angeregt werden und nicht durch direkte Rekombination von Ladungsträgern auf den Emittermolekülen. Eine genaue Justage der Anregungsverteilung zwischen den phosphoreszenten Emittern ist durch Schichtdickenvariation in der Größenordnung üblicher Schichtdicken möglich. Spätere Produktionsanlagen brauchen daher keinen speziellen Genauigkeitsanforderungen gerecht zu werden. Der dritte und zugleich erfolgreichste Ansatz beruht auf einer Weiterentwicklung des zweiten Ansatzes. Er besteht zunächst darin den Tripletttransfer auf den Übertrag von einem fluoreszenten blauen auf einen phosphoreszenten roten Emitter zu beschränken. Die sich ergebende spektrale Lücke wird durch direktes Prozessieren einer unabhängigen voll phosphoreszenten OLED auf diese erste OLED gefüllt. Verbunden sind beide OLEDs durch eine ladungsträgererzeugende Schicht, in welcher durch das angelegte Feld Elektron/Loch-Paare getrennt werden. Dieser Aufbau entspricht elektrisch der Reihenschaltung zweier OLEDs, welche im Rahmen dieser Arbeit individuell untersucht und optimiert werden. Dabei ergibt sich, dass die Kombination von zwei verschiedenen phosphoreszenten Emittern in einer gemeinsamen Matrix die Ladungsträgerbalance in der Emissionszone sowie die Quanteneffizienz der vollphosphoreszenten OLED stark verbessert. Als Ergebnis steht eine hocheffiziente weiße OLED, welche durch die ausgewogene Emission von vier verschiedenen Emittern farbstabiles Licht mit warm weißen Farbkoordinaten (x, y) = (0.462, 0.429) und ausgezeichneten Farbwiedergabeeigenschaften (CRI = 80.1) erzeugt. Dabei sind die mit diesem Ansatz erreichten Lichtausbeuten (hv = 90.5 lm/W) mit denen von voll phosphoreszenten OLEDs vergleichbar.

Page generated in 0.0178 seconds