1 |
Bis(Monoacylglycéro)Phosphate, oxystérols et ORP11 : un trio régulateur du trafic du cholestérol dans les macrophages / Bis(Monoacylglycero)Phosphate, oxysterols and ORP11 : a threesome regulating intracellular cholesterol traffic in macrophagesArnal, Maud 15 December 2015 (has links)
L'athérosclérose est une complication cardiovasculaire majeure des maladies liées à une augmentation du stress oxydatif, comme le diabète de type 2 et le syndrome métabolique. Dans ces situations, les lipoprotéines de faible densité (LDL) subissent une oxydation et leur forte absorption induit une accumulation de cholestérol dans les macrophages sous-endothéliaux. D'autre part, les LDL oxydées sont enrichies en produits d'oxydation du cholestérol appelés oxystérols, dont certains sont impliqués dans la capacité des LDL oxydées à induire un stress oxydant cellulaire et une cytotoxicité, principalement par apoptose. Le Bis(Monoacylglycéro)Phosphate (BMP) est un phospholipide unique, localisé préférentiellement dans les endosomes tardifs, compartiment cellulaire clef dans le métabolisme du cholestérol dérivé des LDL. Lors de travaux antérieurs, l'équipe a démontré le rôle prépondérant du BMP dans la régulation de l'homéostasie du cholestérol dans les macrophages. L'objectif de ce travail a été de décrypter les mécanismes moléculaires intervenant dans le trafic intracellulaire du cholestérol. Ainsi, le BMP régule l'efflux de cholestérol par les HDL (high density lipoproteins) grâce à des mécanismes impliquant les LXRs (liver X receptors) et les transporteurs ABCA1/ABCG1 (ATP binding cassette-type A1/G1). De plus, notre étude indique que le BMP exerce également un rôle protecteur contre l'effet pro-apoptotique des LDL oxydées via la réduction de la production intracellulaire d'oxystérols. Comme une partie du trafic intracellulaire des stérols au sein des macrophages est régulé par OSBP (oxysterol binding protein) et ses protéines dérivées, les ORPs (OSBP-related proteins), nous montrons dans ce rapport que l'action de protection du BMP contre les effets cytotoxiques des oxystérols est fortement diminuée dans des cellules où la protéine ORP11 est supprimée, suggérant que le BMP exerce son rôle protecteur via un mécanisme utilisant la fonction d'ORP11 dans le transport intracellulaire de stérols / Atherosclerosis is a major cardiovascular complication in increased oxidative stress-related diseases such as type 2 diabetes and metabolic syndrome. In these situations, the low density lipoproteins (LDL) undergo oxidation and their high uptake induces cholesterol accumulation in subendothelial macrophages. On the other hand, oxidized LDL are enriched in cholesterol oxidation products called oxysterols, some of them are involved in the ability of oxidized LDL to induce cellular oxidative stress and cytotoxicity, mainly by apoptosis. Bis(Monoacylglycero)Phosphate (BMP) is a unique phospholipid localized preferentially in late endosomes, a central cellular compartment of LDL-cholesterol metabolism. In previous work, the team demonstrated the leading role of BMP in regulation of cholesterol homeostasis in macrophages. The aim of this work was to characterize the molecular mechanisms involved in the intracellular trafficking of cholesterol. Thus, BMP regulates cholesterol efflux to HDL (high density lipoproteins) by mechanisms involving liver X receptors (LXRs) and ABCA1/ABCG1 (ATP binding cassette-type A1/G1) transporters. Moreover, we report BMP also exerts a protective role against the pro-apoptotic effect of oxidized LDL via a reduced production of intracellular pro-apoptotic oxysterols.As part of macrophage intracellular sterol traffic is regulated by oxysterol binding protein (OSBP) and OSBP-related proteins (ORPs), we show that protective action of BMP against cytotoxic oxysterol effects in ORP11-silenced cells, was markedly abrogated, suggesting BMP exerts its protective role via a mechanism involving the function of ORP11 in intracellular sterol transport
|
2 |
Mécanismes du transport lipidique par les protéines ORP/Osh / Mechanisms of lipid transport by the ORP/Osh proteinsMoser von Filseck, Joachim 16 December 2014 (has links)
Une distribution lipidique hétérogène est essentielle à l’identité et fonction des organelles, mais l’échange par trafic vésiculaire tend à annuler cette distribution. Il existe donc des mécanismes qui assurent l’homéostasie des lipides. Les protéines Osh (S. cerevisiae) et les OSBP-Related Proteins (ORP, H. sapiens), sont des transporteurs de lipides. Osh4 est capable d’échanger de l’ergostérol contre le phosphatidylinositol-4-phosphate (PI4P), présent sur l’appareil de Golgi. Utilisant des outils fluorescents mesurant avec une précision inégalée le transport de stérol et de PI4P, nous démontrons qu’Osh4 transporte du stérol contre son gradient de concentration en utilisant l’énergie d’un gradient de PI4P. Un couplage au métabolisme du PI4P permettrait à Osh4 d’alimenter le Golgi avec du stérol, ainsi créant le gradient de stérol entre ces organelles. La protéine OSBP participe, via sa capacité à connecter la membrane du RE à celle du trans-Golgi, à la création de jonctions entre ces organelles. Nous avons montré qu’OSBP, par échange stérol/PI4P, utilise le PI4P pour transférer du cholestérol au Golgi, mais également pour autoréguler sa capacité à former les jonctions. Osh6 lie la phosphatidylsérine, nous permettant d’étudier un nouveau mécanisme d’échange. Nous avons résolu la structure cristallographique d’un complexe Osh6/PI4P et avons pu observer l’échange de ces deux ligands par Osh6 entre deux membranes. Cette étude nous permet de suggérer que l’échange de PI4P avec divers lipides, via les protéines Osh/ORP, serait un mécanisme général permettant aux cellules de maintenir le gradient lipidique entre le RE et les membranes tardives de la voie sécrétoire. / An uneven lipid distribution is essential for the function of eukaryotic organelles. However, exchange of material by vesicular trafficking has a tendency to perturb this distribution; mechanisms must though exist to ensure lipid homeostasis. Osh proteins (S. cerevisiae) and OSBP-Related Proteins (ORPs, H. sapiens), are lipid transfer proteins (LTPs). Osh4 is capable of exchanging ergosterol for phosphatidylinositol 4-phosphate (PI4P), found on the Golgi. Using novel fluorescent tools to measure with unprecedented precision the transport of sterol and PI4P, we find that Osh4 can transport sterol against its concentration gradient using the energy of a PI4P gradient. Coupled to phosphoinositide metabolism, this allows Osh4 to transport sterol to the trans-Golgi and create the sterol gradients observed between these organelles. OSBP participates in the creation of membrane contact sites (MCSs) via its capacity to connect ER membranes to those of the trans-Golgi. We have shown that it uses PI4P for transporting cholesterol from the ER to the trans-Golgi by sterol/PI4P counterexchange, hence also autoregulating its tethering activity. Finally, the identification of phosphatidylserine as a ligand for Osh6 allowed us to analyze the possible extrapolation of the PI4P counterexchange mechanism. We have solved the crystal structure of Osh6 in complex with PI4P and have been able to follow counterexchange of PI(4)P and PS in vitro. Concluding, our studies allow us to suggest a general mechanism for ORP/Osh-mediated counterexchange of PI4P for other lipids to maintain lipid gradients between the ER and late membranes of the secretory pathway.
|
3 |
Une région intrinsèquement désordonnée dans OSBP contrôle la géometrie et la dynamique du site de contact membranaire / An intrinsically disordered region of OSBP controls membrane contact site geometry and dynamicsJamecna, Denisa 12 December 2018 (has links)
La protéine OSBP est un transporteur de lipides qui régule la distribution cellulaire du cholestérol. OSBP comprend un domaine PH, deux séquences « coiled coil », un motif FFAT (deux phénylalanines dans un environement acide), et un domaine de liaison de lipides (ORD) à son extrémité C-terminale. Le domaine PH interagit avec le PI(4)P et la petite protéine G Arf1-GTP au niveau du Golgi, alors que le motif FFAT interagit avec la protéine VAP-A, résidente du réticulum endoplasmique (RE). En liant simultanément tous ces déterminants, OSBP stabilise des sites de contact membranaire entre RE et Golgi, permettant ainsi un contre-échange cholestérol / PI(4)P par l'ORD. OSBP contient également une longue séquence N-terminale d’environ 80 aa, intrinsèquement désordonnée, composée principalement de glycine, proline et d'alanine. Nous démontrons que la présence de ce N-terminus désordonné augmente le rayon de Stoke de OSBP tronquée du domaine ORD, et limite sa densité d’association sur la membrane portant le PI(4)P. La protéine dépourvue du N terminus favorise l'agrégation symétrique des liposomes PI(4)P (mimant la membrane du Golgi) par les deux domaines PH du dimère OSBP, alors que la présence de la séquence désordonnée empêche cette association symétrique. De même, nous observons que la distribution d’OSBP sur la membrane de vésicules unilamellaires géantes (GUV) varie selon la présence ou l'absence du N-terminus. En présence de la séquence désordonnée, la protéine est répartie de manière homogène sur toute la surface du GUV, alors que la protéine sans N-terminal a tendance à s'accumuler à l'interface entre deux GUV de type Golgi. Cette accumulation locale ralentit fortement la mobilité de la protéine à l’interface. Un effet similaire du N-terminal sur la dynamique des protéines est observé lorsque l’association de membranes de type ER et Golgi est assuré par des protéines monomériques (dépourvue du coiled coil) en présence de Vap-A. Les résultats de nos expériences in vitro ont été confirmés en cellules vivantes, où la séquence intrinsèquement désordonnée contrôle le recrutement d’OSBP sur les membranes Golgiennes, sa mobilité et sa dynamique d’activité au cours des cycles de transfert de lipides. La plupart des protéines de la famille d’OSBP contiennent des séquences N-terminales de faible complexité, suggérant un mécanisme général de régulation. / Oxysterol binding protein (OSBP) is a lipid transfer protein that regulates cholesterol distribution in cell membranes. OSBP consists of a pleckstrin homology (PH) domain, two coiled-coils, a “two phenylalanines in acidic tract” (FFAT) motif and a C-terminal lipid binding OSBP-Related Domain (ORD). The PH domain recognizes PI(4)P and small G protein Arf1-GTP at the Golgi, whereas the FFAT motif interacts with the ER-resident protein VAP-A. By binding all these determinants simultaneously, OSBP creates membrane contact sites between ER and Golgi, allowing the counter-transport of cholesterol and PI(4)P by the ORD. OSBP also contains an intrinsically disordered ~80 aa long N-terminal sequence, composed mostly of glycine, proline and alanine. We demonstrate that the presence of disordered N-terminus increases the Stoke’s radius of OSBP truncated proteins and limits their density and saturation level on PI(4)P-containing membrane. The N-terminus also prevents the two PH domains of OSBP dimer to symmetrically tether two PI(4)P-containing (Golgi-like) liposomes, whereas protein lacking the disordered sequence promotes symmetrical liposome aggregation. Similarly, we observe a difference in OSBP membrane distribution on tethered giant unilamellar vesicles (GUVs), based on the presence/absence of N-terminus. Protein with disordered sequence is homogeneously distributed all over the GUV surface, whereas protein without N-terminus tends to accumulate at the interface between two PI(4)P-containing GUVs. This protein accumulation leads to local overcrowding, which is reflected by slow in-plane diffusion. The effect of N-terminus is also manifested in monomeric OSBPderived proteins that tether ER-like and Golgi-like membranes in the presence of VAP-A. Findings from our in vitro experiments are confirmed in living cells, where N-terminus controls the recruitment of OSBP on Golgi membranes, its motility and the on-and-off dynamics during lipid transfer cycles. Most OSBP-related proteins contain low complexity N-terminal sequences, suggesting a general effect.
|
4 |
SNFing Glucose to PASs Mitochondrial Dysfunction: The Role of Two Sensory Protein Kinases in Metabolic DiseasesOng, Kai Li 01 July 2019 (has links)
Mitochondria is no longer viewed as merely a powerhouse of the cell. It is now apparentthat mitochondria play a central role in signaling, maintaining cellular homeostasis and cell fate.Mitochondrial dysfunction has been linked to many human diseases caused by cellular metabolicderegulation, such as obesity, diabetes, neurodegenerative disease, cardiovascular disease andcancer. Eukaryotic organisms have evolved an efficient way in sensing, communicating andresponding to cellular stress and regulating mitochondrial activity correspondingly through acomplex network of intercommunicating protein kinases and their downstream effectors. Thisdissertation focuses on the interplay of two of the master metabolic regulators in the cell: AMPKand PASK, and characterization of the functions of their downstream substrates: OSBP andMED13. AMPK is an energy sensing kinase that maintains energy homeostasis in the cell,whereas PASK is a nutrient sensing kinase that regulates glucose partitioning and respiration inthe cell. Both kinases play important roles in mitochondrial function and regulation, anddeficiency in either kinase has been found to associate with various human pathologies. Furthercharacterization of the cross-talk and molecular mechanisms of both kinases in controllingmitochondrial health and function may aid in the identification of new targets for treatingmetabolic diseases.
|
Page generated in 0.0243 seconds