• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • Tagged with
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biosynthesis and accumulation of terpenoids in plants : production of energy-rich triterpenoids in Euphorbia lathyris, a potential crop for third generation biofuels / Biosynthèse et accumulation des terpénoïdes dans les plantes : production de triterpénoïdes énergétiques dans Euphorbia lathyris, une culture potentielle pour la génération de biocarburant de troisième génération

Forestier, Edith 28 November 2013 (has links)
L’objectif de ce projet de thèse était de caractériser le métabolisme de terpénoïdes (ou isoprénoïdes) chez les plantes supérieures. L’essentiel du travail a consisté à caractériser des triterpènes synthases (TTPS) d’Arabidopsis thaliana, un modèle végétal, ainsi que celles de l’épurge (Euphorbia lathyris), une euphorbe pour laquelle des applications agronomiques sont envisagées. Au cours de ma thèse, j’ai aussi contribué à l’étude du métabolisme et des fonctions des précurseurs de triterpènes et de stérols, ainsi qu’à leurs fonctions biologiques.Les triterpènes synthases, ou 2,3-oxydosqualène cyclases (OSCs), convertissent le substrat 2,3-oxydosqualene (SqO) en une multitude d'alcools triterpéniques, et ainsi amorcent la biosynthèse de dérivés triterpénoïdes (triterpènes oxydés, conjugués, etc ..). Arabidopsis thaliana contient 13 OSCs produisant divers squelettes triterpéniques, de type stéroïdien ou non-stéroïdien. Les produits de cyclisation du SqO ont été élucidés structuralement (GC-MS, RMN) après expression hétérologue des enzymes en levure erg7. Cette levure est déficiente en lanostérol synthase (ERG7), ce qui permet d'accumuler le SqO, substrat des cyclases. Lorsque le mutant est transformé avec un ADNc codant une triterpène synthase, il est capable de convertir le SqO en un ou plusieurs triterpènes. Cependant, la caractérisation des 13 OSCs d'Arabidopsis réalisée de façon hétérologue en levure n’a pas été établie inplanta. De façon surprenante, certains des composés produits dans les levures erg7 transformées n'ont jamais été détectés chez Arabidopsis. C'est pourquoi il a été nécessaire de reconsidérer les fonctions biochimiques exactes de ces enzymes dans un contexte végétal. / The subject of this PhD thesis is part of a research project entitled "Production of energy-rich triterpenoids in Euphorbia lathyris, a potential crop for third generation biofuels," whose acronym is EULAFUEL. This project is funded by a multipartner program ANR-KBBE and has been extended until December 2013. The aim of this PhD project is to get new insights into the aspects related with the biosynthesis and accumulation of latex triterpenoids. In addition, for comparison, a major objective of the thesis is to characterize functionally the enzymes involved in the synthesis of triterpenes in the model plant Arabidopsis thaliana. Triterpene synthases, also named oxidosqualene cyclases (OSCs), convert 2,3-oxidosqualene (OS) into a multitude of triterpene alcohols and there by initiate triterpene biosynthesis. Arabidopsis thaliana for instance has 13 OSCs producing diverse skeletons of steroidal or non-steroidal triterpenes. Cyclization products of a given enzyme have been characterized biochemically using a yeast heterologous expression system. However, for the majority of Arabidopsis triterpene synthases, inplanta studies are lacking. In fact, most of the compounds produced in yeast expressing such enzymes have never been detected in wild-type Arabidopsis. This is a reason why we should reconsider the exact biochemical function of triterpene synthases in the plant context. Then, in a comparative approach in E. lathyris, we project to study the specific triterpene accumulation in the laticifers, a specialized cell type where high amounts of lanosterol, an unusual OS cyclization product for plants, accumulate.
2

Mécanismes du transport lipidique par les protéines ORP/Osh / Mechanisms of lipid transport by the ORP/Osh proteins

Moser von Filseck, Joachim 16 December 2014 (has links)
Une distribution lipidique hétérogène est essentielle à l’identité et fonction des organelles, mais l’échange par trafic vésiculaire tend à annuler cette distribution. Il existe donc des mécanismes qui assurent l’homéostasie des lipides. Les protéines Osh (S. cerevisiae) et les OSBP-Related Proteins (ORP, H. sapiens), sont des transporteurs de lipides. Osh4 est capable d’échanger de l’ergostérol contre le phosphatidylinositol-4-phosphate (PI4P), présent sur l’appareil de Golgi. Utilisant des outils fluorescents mesurant avec une précision inégalée le transport de stérol et de PI4P, nous démontrons qu’Osh4 transporte du stérol contre son gradient de concentration en utilisant l’énergie d’un gradient de PI4P. Un couplage au métabolisme du PI4P permettrait à Osh4 d’alimenter le Golgi avec du stérol, ainsi créant le gradient de stérol entre ces organelles. La protéine OSBP participe, via sa capacité à connecter la membrane du RE à celle du trans-Golgi, à la création de jonctions entre ces organelles. Nous avons montré qu’OSBP, par échange stérol/PI4P, utilise le PI4P pour transférer du cholestérol au Golgi, mais également pour autoréguler sa capacité à former les jonctions. Osh6 lie la phosphatidylsérine, nous permettant d’étudier un nouveau mécanisme d’échange. Nous avons résolu la structure cristallographique d’un complexe Osh6/PI4P et avons pu observer l’échange de ces deux ligands par Osh6 entre deux membranes. Cette étude nous permet de suggérer que l’échange de PI4P avec divers lipides, via les protéines Osh/ORP, serait un mécanisme général permettant aux cellules de maintenir le gradient lipidique entre le RE et les membranes tardives de la voie sécrétoire. / An uneven lipid distribution is essential for the function of eukaryotic organelles. However, exchange of material by vesicular trafficking has a tendency to perturb this distribution; mechanisms must though exist to ensure lipid homeostasis. Osh proteins (S. cerevisiae) and OSBP-Related Proteins (ORPs, H. sapiens), are lipid transfer proteins (LTPs). Osh4 is capable of exchanging ergosterol for phosphatidylinositol 4-phosphate (PI4P), found on the Golgi. Using novel fluorescent tools to measure with unprecedented precision the transport of sterol and PI4P, we find that Osh4 can transport sterol against its concentration gradient using the energy of a PI4P gradient. Coupled to phosphoinositide metabolism, this allows Osh4 to transport sterol to the trans-Golgi and create the sterol gradients observed between these organelles. OSBP participates in the creation of membrane contact sites (MCSs) via its capacity to connect ER membranes to those of the trans-Golgi. We have shown that it uses PI4P for transporting cholesterol from the ER to the trans-Golgi by sterol/PI4P counterexchange, hence also autoregulating its tethering activity. Finally, the identification of phosphatidylserine as a ligand for Osh6 allowed us to analyze the possible extrapolation of the PI4P counterexchange mechanism. We have solved the crystal structure of Osh6 in complex with PI4P and have been able to follow counterexchange of PI(4)P and PS in vitro. Concluding, our studies allow us to suggest a general mechanism for ORP/Osh-mediated counterexchange of PI4P for other lipids to maintain lipid gradients between the ER and late membranes of the secretory pathway.
3

Modulation de l’activité du flavocytochrome b₅₅₈ : étude fonctionnelle / Modulating the activity of flavocytochrome b₅₅₈ : functional study

Souabni, Hager 06 March 2014 (has links)
Le complexe NADPH oxydase est un élément essentiel de l’immunité inné. Présent dans les cellules phagocytaires (neutrophile), sa fonction est de produire massivement, dans le phagosome, des anions superoxyde et générer ainsi des espèces encore plus réactives de l’oxygène qui vont détruire acides nucléiques, lipides et protéines des bactéries phagocytées. Le cœur membranaire catalytique du complexe NADPH oxydase est constitué d’un hétérodimère membranaire, le cytochrome b₅₅₈ (Cyt b₅₅₈). Après activation de celui-ci par les partenaires protéiques cytosoliques p47phox, p67phox, p40phox et Rac, une succession de réactions de transferts d’électron de part et d’autre de la membrane a lieu au sein du Cyt b₅₅₈ pour aboutir à la réduction du dioxygène de manière très contrôlée. Afin de mieux comprendre cette régulation, nous nous sommes d’abord intéressés aux stéreoisomères trans de l’acide arachidonique, activateur naturel de cet enzyme (cis), sur le fonctionnement de la NADPH oxydase et avons abordé cette étude parallèlement sur du Cytb₅₅₈ d’origine bovine présent dans des membranes de neutrophiles et dans des membranes de levures exprimant le Cytb₅₅₈ de manière hétérologue. Nous avons montré que la géométrie joue un rôle important sur l’activation du complexe enzymatique. Dans un deuxième temps, afin d’étudier le rôle de l’environnement membranaire sur le fonctionnement de la NADPH oxydase, nous avons déterminé les propriétés cinétiques et thermodynamiques de l’activité NADPH oxydase du Cytb₅₅₈ recombinant exprimé en levures, purifié, puis reconstitué en liposomes de composition lipidique variée. Après comparaison avec ces mêmes propriétés obtenues pour le Cytb₅₅₈ dans les membranes plasmiques et du réticulum endoplasmique de levures, nous avons montré que l’activité NADPH oxydase très sensible à la température peut être modulée par la composition et l’état physique de la membrane. / NADPH oxidase complex is a major actor of both antimicrobial host defense and inflammation by generating highly regulated superoxide anion, rapidly converted into reactive oxygen species (ROS). The NADPH oxidase complex consists of a heterodimeric integral membrane flavocytochrome b₅₅₈ and three cytosolic components p67phox, p47phox and p40phox, and the small GTP binding protein Rac. In response to a cellular stimulus, cytosolic proteins are recruited to the phagosomal membrane where they are assembled with the Cytb₅₅₈ to form the active NADPH oxidase. The aim of the work was to better understand the modulation of superoxide anion production by this enzyme. For this purpose, we performed experiments with both bovine neutrophil membranes and yeast membranes expressing the bovine recombinant Cytb₅₅₈. We first investigated the effect of the trans-isomerization of the cis-arachidonic acid, the activator of NADPH oxidase in vitro and showed that specific geometry of the activator plays an important role in the activation of the complex. We also studied the role of the membrane environment on the functioning of NADPH oxidase and determined the kinetics and thermodynamics of NADPH oxidase activity depending on the lipid composition of Cytb₅₅₈ proteoliposomes. Comparison with these properties obtained with recombinant Cytb₅₅₈ embedded into endoplasmic reticulum and plasma membranes, we showed that the NADPH oxidase activity is highly temperature dependent and can be modulated by the lipid environment and the physic state of the membrane.
4

Détermination de l’effet protecteur des liposomes non phospholipidiques à haute teneur en cholestérol

Carbajal Romero, Gustavo David GC. 11 1900 (has links)
Nous démontrons qu'il est possible de former des bicouches fluides non phospholipides en milieu aqueux avec un mélange d'acide palmitique (PA), cholestérol (Chol) et sulfate de cholestérol (Schol) avec une proportion molaire de 30/28/42. Ces liposomes non phospholipidiques peuvent maintenir un gradient de pH (pHinterne 8 / pHexterne 6) sur une période 100 fois plus longue que les liposomes faits de 1-palmitoyl-2-oléoyl-sn-glycéro-3-phosphocholine (POPC) et de cholestérol (60/40 mol/mol). De plus, ces LUV non phospholipidiques protègent l'acide ascorbique d'un milieu oxydant (1 mM de fer (III)). Une fois piégé dans les liposomes, l'acide ascorbique présente une vitesse de dégradation similaire à celle obtenue en l'absence de fer(III). Ces performances illustrent la perméabilité exceptionnellement limitée de ces liposomes, ce qui implique qu'ils peuvent présenter des avantages comme nanocontenants pour certaines applications. D'autre part, des vésicules unilamellaires géantes (GUV pour Giant Unilamellar Vesicles) ont été formées à partir d'un mélange d'acide palmitique et de cholestérol (30/70 mol/mol). Ces GUV sont stables sur l'échelle de temps de semaines, elles ne s'agrègent pas et elles sont sensibles au pH. Afin d'établir la formation des GUV, l'imagerie par microscopie confocale à balayage laser a été utilisée. Deux sondes fluorescentes ont été utilisées: le rouge du Nile, une sonde hydrophobe qui s'insère dans le cœur hydrophobe des bicouches lipidiques, et la calcéine, une sonde hydrophile qui a été emprisonné dans le réservoir interne des GUV. Cette approche a permis l'observation des parois des GUV ainsi que de leur contenu. Ces résultats montrent la possibilité de former de nouveaux microcontenants à partir d'un mélange d'un amphiphile monoalkylé et de stérol. / First, we demonstrate that it is possible to form non-phospholipid fluid bilayers in aqueous milieu with a mixture of palmitic acid (PA), cholesterol (Chol), and cholesterol sulfate (Schol) in a molar proportion of 30/28/42. These non-phospholipid liposomes can sustain a pH gradient (pHinternal 8 / pHexternal 6) 100 times longer than LUVs made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (60/40 mol/mol). These non-phospholipid LUVs are shown to protect ascorbic acid from an oxidizing environment (1 mM Iron (III)). Once entrapped in these liposomes, ascorbic acid displays a degradation rate similar to that obtained in the absence of Iron (III). This ability illustrates the exceptionally limited permeability of these liposomes, indicating that they can present advantages as nanocontainers for some applications. Second, Giant Unilamellar Vesicles (GUVs) were formed from a mixture of palmitic acid and cholesterol (30/70 mol/mol). These GUVs were stable over weeks, did not aggregate, and were pH-sensitive. In order to establish their formation, confocal laser scanning microscopy imaging was carried out. Two fluorescent probes were used: Nile Red, a hydrophobic probe that inserted in the hydrophobic core of lipid bilayers, and calcein, a hydrophilic probe that was trapped in the GUV internal pool. This approach allowed observation of both the walls of the GUVs as well as their entrapped content. These results show the possibility to form novel microcontainers from a mixture of a monoalkylated amphiphile and sterols.
5

Étude du maintien et de la rupture de l'association symbiotique Cnidaire-Dinoflagellés : approches cellulaires et moléculaires chez l'anémone de mer Anemonia viridis / Study of the maintenance and the disruption of the Cnidarian-Dinoflagellate symbiotic association : cellular and molecular approaches in the sea anemone Anemonia viridis

Dani, Vincent 03 December 2015 (has links)
L’endosymbiose trophique établie entre un hôte Cnidaire et ses symbiotes Dinoflagellés photosynthétiques est à l’origine du succès évolutif des écosystèmes coralliens. Les symbiotes sont internalisés par un mécanisme de phagocytose et maintenus dans les cellules du gastroderme de l'hôte. La symbiose est régie par un dialogue moléculaire intime entre les deux partenaires, interrompu lors de perturbations environnementales ou anthropiques, responsables du déclin mondial des récifs coralliens. Les objectifs de mon projet de recherche sont de définir les acteurs moléculaires localisés à l’interface symbiotique chez l’anémone de mer, Anemonia viridis. Premièrement, nous avons étudié les mécanismes cellulaires impliqués dans différents types de rupture de la symbiose et mis en évidence des phénomènes d’apoptose, nécrose et symbiophagie. Parallèlement, nous avons caractérisé chez l’anémone les gènes npc1 et npc2, impliqués chez les vertébrés dans le transport endosomal de stérols, et dont l’expression est modulée par l’état symbiotique. Nous avons pu montrer que le gène npc2d est issus d’une duplication et vraisemblablement d’une sub-fonctionnalisation et que les protéines NPC1 et NPC2 sont exprimées au voisinage des symbiotes. Nous proposons donc que la protéine NPC2-d soit utilisée comme marqueur de l’état de santé des Anthozoaires symbiotiques et que la protéine NPC1 soit un marqueur de la membrane périsymbiotique. Nous avons également développé un protocole afin d’identifier les protéines associées à l’interface symbiotique entre les deux partenaires. A terme, les cibles identifiées permettront une meilleure compréhension des mécanismes qui régulent la relation symbiotique. / The trophic endosymbiosis interaction between a cnidarian host and its photosynthetic dinoflagellatessymbionts form the basis of coral reef ecosystems. Cnidarians host their symbionts in gastrodermis cells, in a phagocytosis-derived vacuole. Establishment and maintenance of the symbiotic interaction depend on an intimate molecular communication between the two partners. However, environmental and/or anthropogenic disturbances can lead to the breakdown of the symbiotic association, which is responsible for the worldwide decline of coral reefs. The main objectives of my research project are to improve the knowledge regarding symbiosis maintenance and disruption mechanisms, but also to define the molecular key players involved at the symbiotic interface in the sea anemone, Anemonia viridis. First, we have described the cellular mechanisms involved in the different types of symbiosis breackdown. Meanwhile, the characterization of npc1 and npc2 genes (involved in endosomal sterol transport), showed a duplication and a sub-functionalization of the npc2d gene. Both NPC1 and NPC2 proteins are expressed around symbionts. We therefore suggest that the duplicated protein NPC2-d is a biomarker of symbiosis health and that NPC1 protein is a marker of the perisymbiotic membrane. We then developed a protocol to characterize the proteome of the symbiotic interface between the two symbiotic partners. The newly-identified symbiotic key players will increase the general knowledge on the symbiotic interaction and its regulation during both stable and bleaching conditions.
6

Détermination de l’effet protecteur des liposomes non phospholipidiques à haute teneur en cholestérol

Carbajal Romero, Gustavo David GC. 11 1900 (has links)
Nous démontrons qu'il est possible de former des bicouches fluides non phospholipides en milieu aqueux avec un mélange d'acide palmitique (PA), cholestérol (Chol) et sulfate de cholestérol (Schol) avec une proportion molaire de 30/28/42. Ces liposomes non phospholipidiques peuvent maintenir un gradient de pH (pHinterne 8 / pHexterne 6) sur une période 100 fois plus longue que les liposomes faits de 1-palmitoyl-2-oléoyl-sn-glycéro-3-phosphocholine (POPC) et de cholestérol (60/40 mol/mol). De plus, ces LUV non phospholipidiques protègent l'acide ascorbique d'un milieu oxydant (1 mM de fer (III)). Une fois piégé dans les liposomes, l'acide ascorbique présente une vitesse de dégradation similaire à celle obtenue en l'absence de fer(III). Ces performances illustrent la perméabilité exceptionnellement limitée de ces liposomes, ce qui implique qu'ils peuvent présenter des avantages comme nanocontenants pour certaines applications. D'autre part, des vésicules unilamellaires géantes (GUV pour Giant Unilamellar Vesicles) ont été formées à partir d'un mélange d'acide palmitique et de cholestérol (30/70 mol/mol). Ces GUV sont stables sur l'échelle de temps de semaines, elles ne s'agrègent pas et elles sont sensibles au pH. Afin d'établir la formation des GUV, l'imagerie par microscopie confocale à balayage laser a été utilisée. Deux sondes fluorescentes ont été utilisées: le rouge du Nile, une sonde hydrophobe qui s'insère dans le cœur hydrophobe des bicouches lipidiques, et la calcéine, une sonde hydrophile qui a été emprisonné dans le réservoir interne des GUV. Cette approche a permis l'observation des parois des GUV ainsi que de leur contenu. Ces résultats montrent la possibilité de former de nouveaux microcontenants à partir d'un mélange d'un amphiphile monoalkylé et de stérol. / First, we demonstrate that it is possible to form non-phospholipid fluid bilayers in aqueous milieu with a mixture of palmitic acid (PA), cholesterol (Chol), and cholesterol sulfate (Schol) in a molar proportion of 30/28/42. These non-phospholipid liposomes can sustain a pH gradient (pHinternal 8 / pHexternal 6) 100 times longer than LUVs made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (60/40 mol/mol). These non-phospholipid LUVs are shown to protect ascorbic acid from an oxidizing environment (1 mM Iron (III)). Once entrapped in these liposomes, ascorbic acid displays a degradation rate similar to that obtained in the absence of Iron (III). This ability illustrates the exceptionally limited permeability of these liposomes, indicating that they can present advantages as nanocontainers for some applications. Second, Giant Unilamellar Vesicles (GUVs) were formed from a mixture of palmitic acid and cholesterol (30/70 mol/mol). These GUVs were stable over weeks, did not aggregate, and were pH-sensitive. In order to establish their formation, confocal laser scanning microscopy imaging was carried out. Two fluorescent probes were used: Nile Red, a hydrophobic probe that inserted in the hydrophobic core of lipid bilayers, and calcein, a hydrophilic probe that was trapped in the GUV internal pool. This approach allowed observation of both the walls of the GUVs as well as their entrapped content. These results show the possibility to form novel microcontainers from a mixture of a monoalkylated amphiphile and sterols.
7

Études des interactions détergents/lipides dans les systèmes membranaires

Phoeung, Thida 12 1900 (has links)
Les liposomes sont des structures sphériques formés par l'auto-assemblage de molécules amphiphiles sous forme d'une bicouche. Cette bicouche sépare le volume intérieur du liposome du milieu extérieur, de la même manière que les membranes cellulaires. Les liposomes sont donc des modèles de membranes cellulaires et sont formulés pour étudier les processus biologiques qui font intervenir la membrane (transport de molécules à travers la membrane, effets des charges en surface, interactions entre la matrice lipidique et d'autres molécules, etc.). Parce qu'ils peuvent encapsuler une solution aqueuse en leur volume intérieur, ils sont aussi utilisés aujourd'hui comme nanovecteurs de principes actifs. Nous avons formulé des liposomes non-phospholipidiques riches en stérol que nous avons appelés stérosomes. Ces stérosomes sont composés d'environ 30 % d'amphiphiles monoalkylés et d'environ 70 % de stérols (cholestérol, Chol, et/ou sulfate de cholestérol, Schol). Quand certaines conditions sont respectées, ces mélanges sont capables de former une phase liquide ordonnée (Lo) pour donner, par extrusion, des vésicules unilamellaires. Certaines de ces nouvelles formulations ont été fonctionnalisées de manière à libérer leur contenu en réponse à un stimulus externe. En incorporant des acides gras dérivés de l’acide palmitique possédant différents pKa, nous avons pu contrôler le pH auquel la libération débute. Un modèle mathématique a été proposé afin de cerner les paramètres régissant leur comportement de libération. En incorporant un amphiphile sensible à la lumière (un dérivé de l’azobenzène), les liposomes formés semblent répondre à une radiation lumineuse. Pour ce système, il serait probablement nécessaire de tracer le diagramme de phase du mélange afin de contrôler la photo-libération de l’agent encapsulé. Nous avons aussi formulé des liposomes contenant un amphiphile cationique (le chlorure de cétylpyridinium). En tant que nanovecteurs, ces stérosomes montrent un potentiel intéressant pour la libération passive ou contrôlée de principes actifs. Pour ces systèmes, nous avons développé un modèle pour déterminer l’orientation des différentes molécules dans la bicouche. La formation de ces nouveaux systèmes a aussi apporté de nouvelles connaissances dans le domaine des interactions détergents-lipides. Aux nombreux effets du cholestérol (Chol) sur les systèmes biologiques, il faut ajouter maintenant que les stérols sont aussi capables de forcer les amphiphiles monoalkylés à former des bicouches. Cette nouvelle propriété peut avoir des répercussions sur notre compréhension du fonctionnement des systèmes biologiques. Enfin, les amphiphiles monoalkylés peuvent interagir avec la membrane et avoir des répercussions importantes sur son fonctionnement. Par exemple, l'effet antibactérien de détergents est supposé être dû à leur insertion dans la membrane. Cette insertion est régie par l'affinité existant entre le détergent et cette dernière. Dans ce cadre, nous avons voulu développer une nouvelle méthode permettant d'étudier ces affinités. Nous avons choisi la spectroscopie Raman exaltée de surface (SERS) pour sa sensibilité. Les hypothèses permettant de déterminer cette constante d’affinité se basent sur l’incapacité du détergent à exalter le signal SERS lorsque le détergent est inséré dans la membrane. Les résultats ont été comparés à ceux obtenus par titration calorimétrique isotherme (ITC). Les résultats ont montré des différences. Ces différences ont été discutées. / Liposomes are spherical structures formed by the self-assembly of amphiphilic molecules to form bilayers. The bilayer separates the interior volume of the liposome from the external milieu, as do cellular membranes. Liposomes are cellular membrane models and are used to study biological processes that occur in relation with the membrane (molecular transport across the membrane, surface charge effects, interactions between the lipid matrix and other molecules, etc.). Because they can encapsulate an aqueous solution in their interior volume, they are also used as nanovectors of active agents. We have formulated non-phospholipid liposomes enriched in sterol that we have named sterosomes. These sterosomes are composed of approximately 30 % of monoalkylated amphiphiles and around 70 % of sterols (cholesterol, Chol, and/or cholesterol sulfate, Schol). Under certain conditions, these mixtures are able to form a liquid ordered phase (Lo) and unilamellar vesicles by extrusion. Some of these new formulations were functionalized in order to release their content in response to an external stimulus. By incorporating fatty acids (palmitic acid derivatives) with different pKas, we were able to control the pH at which the release starts. A mathematical model has been proposed in order to get insights on the parameters that control their release behavior. By incorporating a light-sensitive amphiphile (an azobezene derivative), liposomes seem to respond to an irradiation. For this system, it is probably necessary to plot the phase diagram of the mixture in order to control the photo-release of the encapsulated agent. We also have formulated liposomes containing a cationic amphiphile (cetylpyridinium chloride). As nanovectors, these sterosomes show an interesting potential for passive or active agent controlled release. For these systems, a model has been developed in order to study the orientation of the different molecules in the bilayer. The formation of these new formulations has also contributed to new knowledge in the detergent-lipid interaction field. Added to the numerous known effects of cholesterol (Chol) on biological systems, we must now add that sterols are also able to force monoalkylated amphiphiles to form bilayers. This new property can have an impact on our comprehension of biological system functioning. Finally, monoalkykated amphiphiles can interact with the membrane and have a negative impact on its functioning. For example, the antibactericidal effect of detergents is supposed to be due to their insertion in the membrane. This insertion is related to the affinity between the detergent and the membrane. Within this field, we wanted to develop a new method to investigate detergent-membrane affinities. We chose surface enhanced Raman Spectroscopy (SERS) due to its sensitivity. Hypotheses allowing the determination of affinity constants are based on the incapability of the detergent to enhance the SERS signal when the detergent is inserted in the membrane. Results were compared to those obtanined bi isothermal titration calorimetry (ITC). Differences were found and are discussed.
8

Études des interactions détergents/lipides dans les systèmes membranaires

Phoeung, Thida 12 1900 (has links)
Les liposomes sont des structures sphériques formés par l'auto-assemblage de molécules amphiphiles sous forme d'une bicouche. Cette bicouche sépare le volume intérieur du liposome du milieu extérieur, de la même manière que les membranes cellulaires. Les liposomes sont donc des modèles de membranes cellulaires et sont formulés pour étudier les processus biologiques qui font intervenir la membrane (transport de molécules à travers la membrane, effets des charges en surface, interactions entre la matrice lipidique et d'autres molécules, etc.). Parce qu'ils peuvent encapsuler une solution aqueuse en leur volume intérieur, ils sont aussi utilisés aujourd'hui comme nanovecteurs de principes actifs. Nous avons formulé des liposomes non-phospholipidiques riches en stérol que nous avons appelés stérosomes. Ces stérosomes sont composés d'environ 30 % d'amphiphiles monoalkylés et d'environ 70 % de stérols (cholestérol, Chol, et/ou sulfate de cholestérol, Schol). Quand certaines conditions sont respectées, ces mélanges sont capables de former une phase liquide ordonnée (Lo) pour donner, par extrusion, des vésicules unilamellaires. Certaines de ces nouvelles formulations ont été fonctionnalisées de manière à libérer leur contenu en réponse à un stimulus externe. En incorporant des acides gras dérivés de l’acide palmitique possédant différents pKa, nous avons pu contrôler le pH auquel la libération débute. Un modèle mathématique a été proposé afin de cerner les paramètres régissant leur comportement de libération. En incorporant un amphiphile sensible à la lumière (un dérivé de l’azobenzène), les liposomes formés semblent répondre à une radiation lumineuse. Pour ce système, il serait probablement nécessaire de tracer le diagramme de phase du mélange afin de contrôler la photo-libération de l’agent encapsulé. Nous avons aussi formulé des liposomes contenant un amphiphile cationique (le chlorure de cétylpyridinium). En tant que nanovecteurs, ces stérosomes montrent un potentiel intéressant pour la libération passive ou contrôlée de principes actifs. Pour ces systèmes, nous avons développé un modèle pour déterminer l’orientation des différentes molécules dans la bicouche. La formation de ces nouveaux systèmes a aussi apporté de nouvelles connaissances dans le domaine des interactions détergents-lipides. Aux nombreux effets du cholestérol (Chol) sur les systèmes biologiques, il faut ajouter maintenant que les stérols sont aussi capables de forcer les amphiphiles monoalkylés à former des bicouches. Cette nouvelle propriété peut avoir des répercussions sur notre compréhension du fonctionnement des systèmes biologiques. Enfin, les amphiphiles monoalkylés peuvent interagir avec la membrane et avoir des répercussions importantes sur son fonctionnement. Par exemple, l'effet antibactérien de détergents est supposé être dû à leur insertion dans la membrane. Cette insertion est régie par l'affinité existant entre le détergent et cette dernière. Dans ce cadre, nous avons voulu développer une nouvelle méthode permettant d'étudier ces affinités. Nous avons choisi la spectroscopie Raman exaltée de surface (SERS) pour sa sensibilité. Les hypothèses permettant de déterminer cette constante d’affinité se basent sur l’incapacité du détergent à exalter le signal SERS lorsque le détergent est inséré dans la membrane. Les résultats ont été comparés à ceux obtenus par titration calorimétrique isotherme (ITC). Les résultats ont montré des différences. Ces différences ont été discutées. / Liposomes are spherical structures formed by the self-assembly of amphiphilic molecules to form bilayers. The bilayer separates the interior volume of the liposome from the external milieu, as do cellular membranes. Liposomes are cellular membrane models and are used to study biological processes that occur in relation with the membrane (molecular transport across the membrane, surface charge effects, interactions between the lipid matrix and other molecules, etc.). Because they can encapsulate an aqueous solution in their interior volume, they are also used as nanovectors of active agents. We have formulated non-phospholipid liposomes enriched in sterol that we have named sterosomes. These sterosomes are composed of approximately 30 % of monoalkylated amphiphiles and around 70 % of sterols (cholesterol, Chol, and/or cholesterol sulfate, Schol). Under certain conditions, these mixtures are able to form a liquid ordered phase (Lo) and unilamellar vesicles by extrusion. Some of these new formulations were functionalized in order to release their content in response to an external stimulus. By incorporating fatty acids (palmitic acid derivatives) with different pKas, we were able to control the pH at which the release starts. A mathematical model has been proposed in order to get insights on the parameters that control their release behavior. By incorporating a light-sensitive amphiphile (an azobezene derivative), liposomes seem to respond to an irradiation. For this system, it is probably necessary to plot the phase diagram of the mixture in order to control the photo-release of the encapsulated agent. We also have formulated liposomes containing a cationic amphiphile (cetylpyridinium chloride). As nanovectors, these sterosomes show an interesting potential for passive or active agent controlled release. For these systems, a model has been developed in order to study the orientation of the different molecules in the bilayer. The formation of these new formulations has also contributed to new knowledge in the detergent-lipid interaction field. Added to the numerous known effects of cholesterol (Chol) on biological systems, we must now add that sterols are also able to force monoalkylated amphiphiles to form bilayers. This new property can have an impact on our comprehension of biological system functioning. Finally, monoalkykated amphiphiles can interact with the membrane and have a negative impact on its functioning. For example, the antibactericidal effect of detergents is supposed to be due to their insertion in the membrane. This insertion is related to the affinity between the detergent and the membrane. Within this field, we wanted to develop a new method to investigate detergent-membrane affinities. We chose surface enhanced Raman Spectroscopy (SERS) due to its sensitivity. Hypotheses allowing the determination of affinity constants are based on the incapability of the detergent to enhance the SERS signal when the detergent is inserted in the membrane. Results were compared to those obtanined bi isothermal titration calorimetry (ITC). Differences were found and are discussed.

Page generated in 0.4184 seconds