• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tumeurs cérébrales de bas grade : élaboration de modèles in vitro et in vivo pour le développement de thérapies innovantes / Low grade cerebral tumors : development of in vitro and in vivo models for designing innovative therapeutic approaches

Azar, Safa 19 June 2017 (has links)
Les gliomes diffus de bas grades sont des tumeurs qui affectent des régions fonctionnelles du cerveau chez des jeunes patients. Malgré leur faible taux de prolifération ces tumeurs peuvent dégénérer en des tumeurs plus agressives après leurs exérèses. Le gène IDH1 est très fréquemment muté dans les DLGG. Cette mutation confère à l’enzyme isocitratedeshydrogénase (IDH1) la propriété de produire du 2-OH-glutarate (2-HG) au lieu de l’α-cétoglutarate (α-KG). L’oncométabolite 2HG rentre alors en compétition avec l’α-KG pour les enzymes de déméthylation conduisant à une hyperméthylation de l’ADN et de l’histone H3 concourant à un blocage de la différenciation cellulaire. Mon projet de thèse consiste à la caractérisation des cellules tumorales et la compréhension des voies de signalisation impliquées dans la progression tumorale ainsi que l’identité du microenvironnement tumoral. Les récepteurs tyrosine kinase, PDGFRα et EGFR, sont abondamment exprimés par les cellules tumorales mais ne sont pas activés. En revanche, une forte phosphorylation de la protéine Erk p42/44 a été détectée dans les tumeurs. Cette phosphorylation a une double origine : les cellules tumorales et leur environnement. L’utilisation d’une série de marqueurs m’a permis de mieux définir l’état de différenciation des cellules tumorales et de mettre en évidence une préférence pour l’expression de Sox8 dans les oligodendrogliomes tandis que Sox9 est prédominant dans les astrocytomes. Dans une seconde partie, j’ai mis au point des méthodes pour la culture des gliomes diffus de bas grade et isolé cinq lignées de gliomes portant la mutation récurente IDH1 R132H. Récemment, la société Agios a identifié des inhibiteurs très spécifiques (notamment l’AGI-5198) de l’enzyme mutée IDH1 qui, utilisés dans un modèle de gliome murin, provoquent une déméthylation des histones H3K9me3 associées à une augmentation de l’expression de gènes de différenciation ainsi qu’à une réduction de la masse tumorale. A contrario, j’ai montré que l’AGI-5198 augmente la croissance cellulaire sur les lignée de patients, modifie la migration cellulaire ainsi que différentes voies de signalisation.Ces travaux apportent un nouvel éclairage sur le phénotype des cellules tumorales, leur diversité et les mécanismes moléculaires régissant leur prolifération. / Low grade gliomas are low proliferating tumors affecting functional regions of young patients. In most cases, they tend to transform into a more malignant state following surgery. These tumors carry a key mutation in isocitrate dehydrogenase (70-80% of DLGG). Gliomas with IDH1 mutation have improved prognosis compared togliomaswith wild type IDH1. IDH1 protein acquires the ability to convert α-Ketoglutarate (α-KG) to 2-OH-glutarate (2-HG). The new onco-metabolite can interfere with the normal function of α-KG, leading to a general hypermethylation of the genome, thus inducing a blockage of the cellular differentiation. Very good reviews on the molecular mechanisms underlying high grade glioma invasion already exist but little is known about the cellular and molecular mechanisms in diffuse low grade gliomas. To that end, I characterized the profile of IDH1 mutated cells in the different types of DLGG. I have demonstrated that the tyrosine kinase, PDGFRα and EGFR receptors are abundantly expressed by tumor cells eventhough they are not activated. In contrast, a strong phosphorylation of Erk p42 / 44 proteins was detected in these tumors. This phosphorylation has a dual origin: tumor cells and their environment. The use of a series of markers allowed me to better define the state of differentiation of cancerous cells and to demonstrate a preferential expression of Sox8 in oligodendrogliomas while Sox9 is predominant in astrocytomas. In a second time, I have developed a method for the culture of low-grade diffuse gliomas and isolated five cell lines carrying the recurrent mutation IDH1 R132H. Recently Agios has identified very specific inhibitors (particularly AGI-5198) of the mutated IDH1 enzyme which, used in a murine glioma model, contributed to the demethylation of H3K9me3 histones with an increased expression of differentiation related genes as well as a reduction of the tumor mass. On the contrary, I have shown that AGI-5198 increases cell growth of patient cell lines, modifies the cellular migration and various signaling pathways.These studies shed new light on the phenotype of tumor cells, their diversity and The molecular mechanisms governing their proliferation.
2

Etude des sous-unités a de la v-ATPase : caractérisation de leurs interactions avec les protéines SNAREs et étude de l’expression par des gliomes de la sous-unité rénale a4 / Studies of the a-subunits of v-ATPase : characterization of their interactions with SNARE proteins and study of the expression of the renal a4 subunit by gliomas

Gleize, Vincent 20 October 2011 (has links)
La v-ATPase est une pompe à protons. Elle permet l’acidification d’organelles, ce qui est indispensable à de nombreux processus cellulaires. Cette enzyme est composée de 14 sous-unités différentes, organisées en deux domaines, le domaine catalytique V1 et le domaine membranaire V0. La sous-unité a du domaine V0 est essentielle au transport des protons. Il en existe 4 isoformes (a1 à a4) et des variants d’épissage (a1-I à a1-IV pour a1) permettant à la v-ATPase d’être adressée vers différents compartiments et donc d’être impliquée dans différents processus. Deux projets visant à étudier cette sous-unité ont été réalisés.En plus de son rôle dans le transport des protons, il a été montré que le domaine V0 de la v-ATPase est impliqué dans des évènements de trafic membranaire, tel que l’exocytose de vésicules de sécrétion. Ce rôle semble nécessiter des interactions avec les protéines SNAREs. J’ai montré, pendant la première partie de ma thèse, que les sous-unités flag-a1-I et flag-a1-IV sont toutes deux adressées aux granules de sécrétion de cellules neurosécrétrices et interagissent avec les protéines SNAREs VAMP2 et syntaxine-1. De façon intéressante la syntaxine-1 semble interagir préférentiellement avec la sous-unité a1-I qui dans les neurones est l’isoforme adressée aux terminaisons nerveuses. Les sous-unités a1-IV ne diffèrent d’a1-I que par l’ajout de 7 acides aminés dans sa moitié N-terminale. Le domaine d’interaction de la sous-unité a avec la syntaxine-1 semble donc être localisé dans cette région.Dans la deuxième partie de ma thèse, j’ai mis en évidence et étudié l’expression de la sous-unité rénale a4 dans des gliomes humains. Ces tumeurs sont les tumeurs cérébrales les plus fréquentes et sont en général associées à un mauvais pronostic. L’OMS distingue, en fonction de paramètres histologiques, les astrocytomes (de grade I à IV), les oligodendrogliomes et les gliomes mixtes (chacun de grade II ou III). Cette classification est controversée, notamment à cause de son manque de reproductibilité, et la prise en compte de marqueurs moléculaires semble s’imposer comme une solution pour la renforcer.J’ai quantifié par RT-PCR quantitative l’expression du gène ATP6V0A4 (codant la sous-unité a4) dans 188 prélèvements de gliomes humains. Nous avons ainsi montré que l’expression de la sous-unité a4 peut être utilisée comme marqueur diagnostique des oligodendrogliomes anaplasiques (35 % l’expriment). Dans un prélèvement, la présence de la codélétion 1p/19q et l’expression de a4, tout deux marqueurs indépendants des oligodendrogliomes, permettra le renforcement du diagnostique oligodendrogliome anaplasique. De plus a4 est fréquemment exprimée par les astrocytomes pilocytiques (70%), où elle est associée à la duplication en tandem de la région chromosomique 7q34 située à proximité directe du gène ATP6V0A4. Enfin une observation prometteuse est que l’expression de a4 pourrait être un marqueur de mauvais pronostic pour les patients atteints d’oligodendrogliome anaplasique ne présentant pas la co-délétion 1p/19q, observation qui devra être confirmée sur une plus grande cohorte de patients. / Vacuolar type H+-ATPase is a proton pump, which acidifies numerous organelles, crucial for many cellular processes. This enzyme is composed of 14 different subunits organized in two domains, a catalytic V1 domain and a V0 membrane domain. The a-subunit of V0 is essential for proton transport. There are 4 isoforms of a (a1 to a4) and splicing variants (a1-I to a1-IV for the a1 subunit). v-ATPases containing different a-subunit isoforms are localized in different compartments allowing v-ATPase to participate in different processes. The a-subunits were studied in this work in two distinct projects.Besides its role in proton pumping, V0 domain of v-ATPase is implicated in organelles trafficking events, like vesicles exocytosis. This role seems to require interactions of V0 with SNARE proteins. During my thesis work, I showed that flag-a1-I and flag-a1-IV are both targeted to secretion granules in PC12 neurosecretory cells. These subunits interact with the SNARE proteins VAMP2 and syntaxin-1. Interestingly, syntaxin-1 seems to preferentially interact with the a1-I subunit, isoform which in neurons is sorted to nerve terminals. The only difference between a1-I and a1-IV subunits is the addition of 7 amino acids in the N-terminal half of a1-IV. So syntaxin-1 probably interacts with a1-I at this location. In a second project, I studied the expression of the renal a4-subunit in human gliomas. These tumors are the most frequent brain tumors and are generally associated with a poor prognosis. Based on histological parameters,WHO distinguishes, astrocytomas (grade I to IV), oligodendrogliomas and oligoastrogliomas (each of grade II or III). This classification suffers of a lack of reproducibility, which could be overcome by the identification of specific molecular markers.In the present work, by real time quantitative PCR, ATP6V0A4 gene (encoding the renal a4) expression was quantified in 188 human glioma biopsies. We established a4 expression as a new marker of grade III oligodendrogliomas (35 % express it), independent of the 1p/19q codeletion, an established marker of oligodendrogliomas. Moreover, a4 is expressed in 70% of pilocytic astrocytomas, in which it is associated with the tandem duplication of 7q34, localized at direct proximity of the ATP6V0A4 gene. Of promising interest is the observation that a4 expression could be considered as a bad prognostic marker for patients with 1p/19q non-deleted oligodendrogliomas, an observation that should be confirmed on larger cohorts of patients.
3

Comparative analysis of histologically classified oligodendrogliomas reveals characteristic molecular differences between subgroups

Lauber, Chris, Klink, Barbara, Seifert, Michael 12 June 2018 (has links) (PDF)
Background Molecular data of histologically classified oligodendrogliomas are available offering the possibility to stratify these human brain tumors into clinically relevant molecular subtypes. Methods Gene copy number, mutation, and expression data of 193 histologically classified oligodendrogliomas from The Cancer Genome Atlas (TCGA) were analyzed by well-established computational approaches (unsupervised clustering, statistical testing, network inference). Results We applied hierarchical clustering to tumor gene copy number profiles and revealed three molecular subgroups within histologically classified oligodendrogliomas. We further screened these subgroups for molecular glioma markers (1p/19q co-deletion, IDH mutation, gain of chromosome 7 and loss of chromosome 10) and found that our subgroups largely resemble known molecular glioma subtypes. We excluded glioblastoma-like tumors (7a10d subgroup) and derived a gene expression signature distinguishing histologically classified oligodendrogliomas with concurrent 1p/19q co-deletion and IDH mutation (1p/19q subgroup) from those with predominant IDH mutation alone (IDHme subgroup). Interestingly, many signature genes were part of signaling pathways involved in the regulation of cell proliferation, differentiation, migration, and cell-cell contacts. We further learned a gene regulatory network associated with the gene expression signature revealing novel putative major regulators with functions in cytoskeleton remodeling (e.g. APBB1IP, VAV1, ARPC1B), apoptosis (CCNL2, CREB3L1), and neural development (e.g. MYTIL, SCRT1, MEF2C) potentially contributing to the manifestation of differences between both subgroups. Moreover, we revealed characteristic expression differences of several HOX and SOX transcription factors suggesting the activity of different glioma stemness programs in both subgroups. Conclusions We show that gene copy number profiles alone are sufficient to derive molecular subgroups of histologically classified oligodendrogliomas that are well-embedded into general glioma classification schemes. Moreover, our revealed novel putative major regulators and characteristic stemness signatures indicate that different developmental programs might be active in these subgroups, providing a basis for future studies.
4

Comparative analysis of histologically classified oligodendrogliomas reveals characteristic molecular differences between subgroups

Lauber, Chris, Klink, Barbara, Seifert, Michael 12 June 2018 (has links)
Background Molecular data of histologically classified oligodendrogliomas are available offering the possibility to stratify these human brain tumors into clinically relevant molecular subtypes. Methods Gene copy number, mutation, and expression data of 193 histologically classified oligodendrogliomas from The Cancer Genome Atlas (TCGA) were analyzed by well-established computational approaches (unsupervised clustering, statistical testing, network inference). Results We applied hierarchical clustering to tumor gene copy number profiles and revealed three molecular subgroups within histologically classified oligodendrogliomas. We further screened these subgroups for molecular glioma markers (1p/19q co-deletion, IDH mutation, gain of chromosome 7 and loss of chromosome 10) and found that our subgroups largely resemble known molecular glioma subtypes. We excluded glioblastoma-like tumors (7a10d subgroup) and derived a gene expression signature distinguishing histologically classified oligodendrogliomas with concurrent 1p/19q co-deletion and IDH mutation (1p/19q subgroup) from those with predominant IDH mutation alone (IDHme subgroup). Interestingly, many signature genes were part of signaling pathways involved in the regulation of cell proliferation, differentiation, migration, and cell-cell contacts. We further learned a gene regulatory network associated with the gene expression signature revealing novel putative major regulators with functions in cytoskeleton remodeling (e.g. APBB1IP, VAV1, ARPC1B), apoptosis (CCNL2, CREB3L1), and neural development (e.g. MYTIL, SCRT1, MEF2C) potentially contributing to the manifestation of differences between both subgroups. Moreover, we revealed characteristic expression differences of several HOX and SOX transcription factors suggesting the activity of different glioma stemness programs in both subgroups. Conclusions We show that gene copy number profiles alone are sufficient to derive molecular subgroups of histologically classified oligodendrogliomas that are well-embedded into general glioma classification schemes. Moreover, our revealed novel putative major regulators and characteristic stemness signatures indicate that different developmental programs might be active in these subgroups, providing a basis for future studies.

Page generated in 0.0528 seconds