• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 28
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 116
  • 21
  • 20
  • 15
  • 13
  • 11
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Kimberlitic olivine

Brett, Richard Curtis 05 1900 (has links)
Kimberlite hosts two populations of olivine that are distinguished on the basis of grain size and morphology; the populations are commonly described genetically as xenocrysts and phenocrysts. Recent studies of zoning patterns in kimberlitic olivine phenocrysts have cast doubt on the actual origins of the smaller olivine crystals. Here, we elucidate the nature and origins of the textural and chemical zonation that characterize both populations of olivine. Specifically, we show that both olivine-I and olivine-II feature chemically distinct overgrowths resulting from magmatic crystallization on pre-existing olivine xenocrysts. These results suggest that the total volume of olivine crystallized during transport is substantially lower (≤5%) than commonly assumed (e.g. ~25%), and that crystallization is dominantly heterogeneous. This reduces estimates of the Mg# in primitive kimberlite melt to more closely reconcile with measured phenocryst compositions. Several additional textures are observed in olivine, and include: sealed cracks, healed cracks, phases trapping in cracks, rounded grains, overgrowths and phase trapping in overgrowths. These features record processes that operate in kimberlite during ascent, and from these features we create a summary model for kimberlite ascent: • Olivine is incorporated into kimberlitic melts at great depths as peridotitic mantle xenoliths. • Shortly after the incorporation of these xenocrysts the tensile strength of the crystals within xenoliths is reached at a minimum of 20 km from its source. Disaggregation of mantle xenoliths producing xenocrysts is facilitated by expansion of the minerals within the xenoliths. • The void space produced by the failure of the crystals is filled with melt and crystals consisting of primary carbonate (high-Sr), chromite and spinel crystals. The carbonate later crystallizes to produce sealed fractures. • Subsequent decompression causes cracks that are smaller than the sealed cracks and are preserved as healed cracks that crosscut sealed cracks. • Mechanical rounding of the xenocrysts post-dates, and/or occurs contemporaneously with decompression events that cause cracking. • Saturation of olivine produces rounded overgrowths on large xenocrysts, euhedral overgrowths on smaller xenocrysts, and a volumetrically minor population of olivine phenocrysts. Olivine growth traps fluid, solid and melt inclusions. Calculations based on these relationships suggest that the melt saturates with olivine at a maximum depth of 20 km and a minimum depth of 7 km. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
42

Nanoparticles-infused lithium manganese phosphate coated with magnesium-gold composite thin film - a possible novel material for lithium ion battery olivine cathode.

Hlongwa, Ntuthuko Wonderboy January 2014 (has links)
>Magister Scientiae - MSc / Architecturally enhanced electrode materials for lithium ion batteries (LIB) with permeable morphologies have received broad research interests over the past years for their promising properties. However, literature based on modified porous nanoparticles of lithium manganese phosphate (LiMnPO₄) is meagre. The goal of this project is to explore lithium manganese phosphate (LiMnPO₄) nanoparticles and enhance its energy and power density through surface treatment with transition metal nanoparticles. Nanostructured materials offer advantages of a large surface to volume ratio, efficient electron conducting pathways and facile strain relaxation. The material can store lithium ions but have large structure change and volume expansion during charge/discharge processes, which can cause mechanical failure. LiMnPO₄ is a promising, low cost and high energy density (700 Wh/kg) cathode material with high theoretical capacity and high operating voltage of 4.1 V vs. Ag/AgCl which falls within the electrochemical stability window of conventional electrolyte solutions. LiMnPO₄ has safety features due to the presence of a strong P–O covalent bond. The LiMnPO₄ nanoparticles were synthesized via a sol-gel method followed by coating with gold nanoparticles to enhance conductivity. A magnesium oxide (MgO) nanowire was then coated onto the LiMnPO₄/Au, in order to form a support for gold nanoparticles which will then form a thin film on top of LiMnPO₄ nanoparticles crystals. The formed products will be LiMnPO₄/Mg-Au composite. MgO has good electrical and thermal conductivity with improved corrosion resistance. Thus the electronic and optical properties of MgO nanowires were sufficient for the increase in the lithium ion diffusion. The pristine LiMnPO₄ and LiMnPO₄/Mg-Au composite were examined using a combination of spectroscopic and microscopic techniques along with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Microscopic results revealed that the LiMnPO₄/Mg-Au composite contains well crystallized particles and regular morphological structures with narrow size distributions. The composite cathode exhibits better reversibility and kinetics than the pristine LiMnPO₄ due to the presence of the conductive additives in the LiMnPO₄/Mg-Au composite. This is demonstrated in the values of the diffusion coefficient (D) and the values of charge and discharge capacities determined through cyclic voltammetry. For the composite cathode, D= 2.0 x 10⁻⁹ cm²/s while for pristine LiMnPO₄ D = 4.81 x 10⁻¹⁰ cm2/s. The charge capacity and the discharge capacity for LiMnPO₄/Mg-Au composite were 259.9 mAh/g and 157.6 mAh/g, respectively, at 10 mV/s. The corresponding values for pristine LiMnPO₄ were 115 mAh/g and 44.75 mAh/g, respectively. A similar trend was observed in the results obtained from EIS measurements. These results indicate that LiMnPO₄/Mg-Au composite has better conductivity and will facilitate faster electron transfer and therefore better electrochemical performance than pristine LiMnPO₄. The composite cathode material (LiMnPO₄/Mg-Au) with improved electronic conductivity holds great promise for enhancing electrochemical performances, discharge capacity, cycle performance and the suppression of the reductive decomposition of the electrolyte solution on the LiMnPO₄ surface. This study proposes an easy to scale-up and cost-effective technique for producing novel high-performance nanostructured LiMnPO₄ nanopowder cathode material.
43

Eluvial chromite resources of the Great Dyke of Zimbabwe

Musa, Caston Tamburayi January 2007 (has links)
Apart from the concentrations of chromite in layers within the Great Dyke and other ultramafic complexes, chromite also occurs as interstitial grains throughout the olivine-bearing rock-types. These olivine-bearing rocks include no rites, gabbros, dunites and pyroxenites. Chromite concentration in these rocks varies from 0.48 to 3.09 per cent of the rock, usually in the form of chromite (Ahrens, 1965; Worst, 1960). A small fraction of this chromite settled to form chromitite layers whilst the remainder is retained within the rock mass as finely disseminated chromite and chromite interstitial to olivine. This retained chromite is much finer grained than layer chromite and is the primary source of eluvial chromite (Cotterill, 1981). During weathering of the serpentine rock and transportation by rainwater, the heavier chromite and magnetite grains are re-deposited along watercourses and vleis or valleys as the speed of the water is retarded sufficiently for the heavier particles to settle. The lighter serpentine material is removed and the chromite concentration in the soil is increased, thus resulting in eluvial chromite (Keech et ai, 1961; Worst, 1960; Prendergast, 1978). The concentration of chromite particles in soil can be up to 15 (or more) Cr₂O₃ %, resulting in economic and exploitable deposits, located primarily along the Great Dyke fiacks. A preliminary evaluation of the eluvials indicate that the Great Dyke could be host to up to 10 million tonnes of potential chromite concentrates which could be processed from such eluvial concentrates. These chromite-rich soils can be mined more cheaply than the traditional seams mining and processed into chromite concentrates through simple mechanical processing techniques of spirals, jigs and heavy media separators. The resultant chromite concentrates are of high quality and can be used to manufacture chromite ore briquettes, which are an alternative to lumpy chromite smelter feed. The main challenges to eluvial mining are the inevitable environmental degradation and coming up with methods that could possibly mitigate against such environmental damage. The distribution of these eluvials over vast plains as thin soil horizons, necessitate use of mobile concentrator plants and hence establishment of extensive infrastructure. These challenges, however, are not insurmountable and test mining and previous production runs have proved profitable. The eluvials are also associated with some lateritic nickel concentrations. The nickel occurs in close association with some oxide such as goethite and garnierite and is associated with iron-manganiferous soil pisolites. The analyses of these pisolites indicate high nickel grades of generally above 1.00 %Ni. Such high nickel-content of Great Dyke laterites warrant, further investigations.
44

Composition and compositional zoning of olivine as a tracer for pre-eruptive magmatic processes: Application to Piton de la Fournaise, Laacher See, and Shiveluch volcano

Sundermeyer, Caren 03 June 2020 (has links)
No description available.
45

Diverse monogenetic volcanism across the main arc of the central Andes, northern Chile

van Alderwerelt, Brennan Martin Edelman de Roo 01 January 2017 (has links)
Instances of fault-controlled monogenetic volcanism across the subduction arc of the Central Andes at ~ 23°S illuminate the nature of different parental melts being delivered to the crust. Evidence of magmatic history is preserved in bulk rock geochemistry, the content of melt inclusions, and mineral compositions. Volcanism in this region is dominated by felsic and intermediates lavas as the thickened crust (55 – 65 km) and vast volumes (> 500,000 km3) of mid-crustal magma beneath the Altiplano-Puna high plateau region prevent mafic magmas from reaching the surface (Davidson & De Silva, 1991; Beck et al., 1996; Perkins et al., 2016). However, small volumes of relatively undifferentiated lava have been delivered from the lower crust to the surface along zones of crustal weakness without extensive processing by crustal assimilation and/or extended storage in sub-volcanic magma chambers. Monogenetic eruptions of less-differentiated lava provide important constraints on compositions normally obscured by crustal processing in the Central Andes. Basaltic andesite sampled within the frontal arc (Cerro Overo maar) is a regional mafic end-member and approximates the composition of parental arc magmas derived from partially-molten lower crustal regions where mantle-derived magmas interact with the surrounding lithosphere and undergo density differentiation (MASH zones). Basaltic olivine-hosted melt inclusions from Cerro Overo provide a glimpse of less-evolved melt composition from this region and suggest mobilization of MASH magma by injection of basaltic melt. Basaltic andesite sampled from the eastern (back) margin of the frontal arc (Puntas Negras – El Laco) is another regional mafic endmember, representing a mantle-derived magma composition that is transitional between subduction arc magmatism and intraplate magmatism of the back-arc. The internal crystal architecture revealed by major and trace element zoning of olivine phenocrysts indicates Cerro Overo magma experienced continuous ascent, while Puntas Negras magma experienced a brief period of stalling or storage near the brittle-ductile transition zone (~ 25 km). Aphyric intermediate monogenetic lavas sampled west of (before) the frontal arc display Adakite-like signatures (e.g. high Sr/Y and Sm/Yb) represent small amounts of melt generated with a significant contribution from direct melting of the metabasaltic slab or delaminated lithospheric root at high pressure. These three magmatic regimes sampled at monogenetic centers approximate different end-member compositions being delivered to the lower crust of the Central Andes from which the range of intermediate main arc volcanism in the Altiplano-Puna region is ultimately derived.
46

STRUCTURAL VARIATION IN THE PHOSPHATE OLIVINE LITHIOPHILITE-TRIPHYLITE SERIES AND CHARACTERIZATION OF LIGHT ELEMENT (Li, Be, AND B) MINERAL STANDARDS

Losey, Arthur Bill 24 April 2002 (has links)
No description available.
47

Plastic flow of single-crystal olivine.

Durham, William Bryan January 1975 (has links)
Thesis. 1975. Ph.D. cn--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Microfiche copy available in Archives and Science. / Vita. / Bibliography: leaves 180-186. / Ph.D.cn
48

An experimental investigation of dislocation glide in olivine

Blake, Brenda Jean January 1976 (has links)
Thesis. 1976. M.S. cn--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Microfiche copy available in Archives and Science. / Bibliography: leaves 39-40. / by Brenda J. Blake. / M.S.cn
49

The Evolution of the Galapagos Mantle Plume: From Large Igneous Province to Ocean Island Basalt

Trela, Jarek 21 April 2017 (has links)
Mantle plumes are anomalously hot, narrow upwellings of mantle material that originate at the core-mantle boundary. As plumes rise they may form volumetrically large "heads" (~1000 km in diameter) with narrower (~100 km) "tails." Plume head melting is thought to form Large Igneous Provinces (LIPs), vast outpourings of basaltic lava (~106 km3), while plume tail melting forms linear chains of ocean island basalts (OIBs) similar the Emperor-Hawaii Seamount chain. Mantle plume derived melts indicate that these structures sample deep Earth geochemical and lithological heterogeneities. Studying plume-derived lavas can clarify important planetary-scale questions relating to the accretion of the Earth, primordial geochemical reservoirs, the fate of subducted materials, planetary differentiation, and convective mixing. / Ph. D.
50

Interactions entre déformation et percolation de magma ou de fluide dans le manteau à l'aplomb des zones de subduction / Interactions between deformation and melt or fluid percolation in the supra-subduction mantle

Soustelle, Vincent 02 December 2010 (has links)
Ce travail apporte de nouvelles contraintes sur les interactions entre déformation et processus d'hydratation et de percolation de magma ou de fluides et leurs implications sur les propriétés sismiques dans le coin mantellique. Il se base sur l'analyse de péridotites à spinelle provenant du massif de Ronda (Espagne) et deux séries de xénolites issues de zones de subduction actives (Kamchatka, Papouasie-Nouvelle-Guinée). L'étude structurale, pétrologique et géochimique de ces échantillons montrent qu'ils ont subi une percolation réactive de magma ou de fluide synchrone d'une déformation de haute température basse contrainte cohérente avec les condition PT de la base de la lithosphère ou de l'asthénosphère. Cette percolation réactive est responsable d'un enrichissement en pyroxènes localisés dans des bandes parallèles aux structures de déformation. Cet enrichissement est associé à la décroissance et à la désorientation des cristaux d'olivine. Le système de glissement dominant dans l'olivine est {0kl}[100], cela implique que la direction de polarisation rapide des ondes S dans la partie supérieure du coin mantellique est parallèle à la direction d'écoulement du manteau. L'enrichissement en pyroxène associé à une décroissance de l'intensité des OPR de l'olivine a pour conséquence une baisse non négligeable de l'anisotropie qui peut induire jusqu'à 33% d'erreur sur l'interprétation de la couche anisotrope. Un enrichissement en orthopyroxène peut entraîner une baisse du rapport Vp/Vs, mais ne peut expliquer des Vp/Vs <1,7 cartés dans certains avant-arcs. Cependant de telles valeurs peuvent être expliquées si l'anisotropie des péridotites du coin mantellique est prise en compte. / This work provides new constraints on the interactions between deformation and hydration process and the percolation of melt or fluids, and their implications for seismic properties of the mantle wedge. It is based on the analysis of spinel peridotites from the massif of Ronda (Spain) and two xenolith suites from active subduction zones (Kamchatka, Papua New Guinea). The structural, petrological and geochemical of these samples show that they underwent a reactive percolation of melt or fluid, which was synchronous to a deformation event occuring under high temperature and low stress consistent with the PT conditions of the base of the lithosphere or in the asthenosphere. This reactive percolation is responsible for pyroxenes enrichment localized in bands parallel to the deformation structures. This enrichment is associated with the grain size recuction and the disorientation of the crystals of olivine. The dominant slip system in olivine is {0 kl}[100], which results in fast S-wave polarization parallel to the flow direction in the mantle. The enrichment in pyroxene, associated with a decrease in the intensity of the olivine crystal preferred orientations, results in a significant decrease of the anisotropy that may induce error on the interpretation of the anisotropic layer (up to 33%). The observed orthopyroxene enrichment also lowers the Vp/Vs ratio, but cannot explain Vp/Vs < 1.7 mapped in some fore-arc mantles. Such low Vp/Vs ratios may however be explained by considering the intrinsic anisotropy of the peridotites, which is generally ignored in large-scale Vp/Vs ratio mapping of the mantle wedge.

Page generated in 0.1239 seconds