Spelling suggestions: "subject:"omnidirectional robot"" "subject:"omnidirectionnal robot""
1 |
Omnidirectional Quadruped Robot / Multidirektionell Fyrbent RobotStenow, Samuel, Lindenfors, Simon January 2021 (has links)
There are a lot of quadruped robots in the world, but few are omnidirectional. Therefore this thesis describes the production and design process of such a robot. Examining earlier quadruped robots determined that a central microcontroller is required to control it, and servo motors are used to power the robots joints. Reaserch also determined the base of the mathematical methods used. Additionally, there are multiple types of sprawling gaits, ranging from statically stable to dynamically stable. In this project astatically stable gait is used. The thesis illustrates the mathematical models used to define the omnidirectional movement, and describes the code used to implement it. The result is a robot that can move omnidirectionally, both normally and upside down. The results show that there is a deviation depending upon the direction, but it is small. The main advantage of omnidirectionallity is the ability to change movement direction without stopping or turning. It also enables directional adjustment without requiring any steps. / Det här projektet gick ut på att skapa en krypande fyrbent robot som kan gå i alla riktningar utan att rotera runt sitt eget centrum. Det finns idag redan ett stort antal olika fyrbenta robotar, men få kan gå i alla riktningar. Därav så beskriver den här rapporten framtagningen och designprocessen för en sådan robot. Undersökning av fyrbenta robotar visade att en mikrokontroller är nödvändigför att kontrollera roboten och servomotorer bör användas för att driva lederna. Förstudeierna gav även basen för de matematiska modellerna som används for rörelserna, samt vetskapen om ett flertal olika typer av gångstilar, allt från statiskt stabil till dynamiskt stabil. I det här projektet beskrivs de matematiska modellerna som används för att definiera rörelsen i alla riktningar och hur dessa appliceras i programmeringen av roboten. Resultatet blev en robot som kan gå i alla riktningar utan att rotera runt sitt centrum, både normalt och uppochner. Detta ger möjligheten att byta rörelse riktning utan att behöva stanna eller vända sig, samt möjliggör även riktnings korrektioner utan att kräva extra steg.
|
2 |
Robocup small size league : active ball handling systemSmit, Daniel Gideon Hugo 04 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The RoboCup offers a research platform to advance robotics and multi-robot
cooperation in dynamic environments. This project builds on work previously
done to develop a research platform for multi-robot cooperation at Stellenbosch
University. This thesis describes the development of an active ball handling
system for a robot in the RoboCup Small Size League (SSL). This was achieved
by building on the work done in the previous projects.
The hardware for the kicker and dribbler mechanisms on the robot were
implemented and tested to characterise their capabilities. The kicker was
characterised to control the speed at which a ball is kicked and the dribbler
for optimal control over a ball. More accurate movement was required and the
Proportional Integral and Derivative (PID) controllers for translational and
rotational movement on the robot were improved. The test results show an
improvement in straight line trajectory tracking when compared to those of the
previous controllers. Dribble control sensors were implemented on the robot for
successful dribbling by the robot. This resulted in a significant improvement to
the dribbling ability of the robot when these sensors are used. This dribbling
ability was compared to the dribbling ability of the robot when no feedback
was received from the sensors. Lastly a proposed curved trajectory tracking
algorithm was tested by combining translational and rotational movement of
the robot. This algorithm showed the capabilities of the robot to follow a
curved trajectory with the improved translational and rotational controllers. / AFRIKAANSE OPSOMMING: Die RoboCup bied ’n navorsingsplatvorm om robotika en multi-robot samewerking
in ’n dinamiese omgewing te bevorder. Hierdie projek bou voort op
werk wat reeds gedoen is om ’n navorsingsplatvorm vir multi-robot samewerking
aan die Universiteit van Stellenbosch te ontwikkel. Hierdie tesis beskryf die
ontwikkeling van ’n aktiewe balhanteringsstelsel vir ’n robot in die RoboCup
Klein Liga (KL). Dit is bereik deur voort te bou op die werk wat in vorige
projekte gedoen is.
Die hardeware vir die skopper- en dribbelmeganismes is geïmplementeer
en getoets om hulle vermoëns te karakteriseer. Die skopper is gekenmerk deur
die spoed waarteen ’n bal geskop word en die dribbler vir optimale beheer
oor ’n bal. Meer akkurate beweging was nodig en die PID-beheerders vir
translasie- en rotasiebeweging in die robot is verbeter. Die resultate van die
toetse toon ’n verbetering in reguitlynbeweging in vergelyking met dié van die
vorige beheerders. Dribbelbeheersensors is in die robot geïmplementeer vir
suksesvolle dribbelbeweging deur die robot. Gevolglik is daar ’n aansienlike
verbetering in die dribbelvermoë van die robot wanneer hierdie sensors gebruik
word. Hierdie dribbelvermoë is vergelyk met die dribbelvermoë wanneer die
robot geen terugvoer van die sensors ontvang nie. Laastens is ’n voorgestelde
algoritme vir die robot om ’n geboë trajek te volg, getoets. Dit is bereik deur
die translasie- en die rotasiebeweging van die robot te kombineer. Hierdie
algoritme het die vermoë van die robot om ’n geboë baan te laat volg deur
gebruik te maak van die verbeterde translasie- en rotasiebeheerders.
|
Page generated in 0.1219 seconds