Spelling suggestions: "subject:"anline convex optimization"" "subject:"bnline convex optimization""
1 |
Online convex optimization: algorithms, learning, and duality / Otimização convexa online: algoritmos, aprendizado, e dualidadePortella, Victor Sanches 03 May 2019 (has links)
Online Convex Optimization (OCO) is a field in the intersection of game theory, optimization, and machine learning which has been receiving increasing attention due to its recent applications to a wide range of topics such as complexity theory and graph sparsification. Besides the usually simple description and implementation of OCO algorithms, a lot of this recent success is due to a deepening of our understanding of the OCO setting and their algorithms by using cornerstone ideas from convex analysis and optimization such as the powerful results from convex duality theory. In this text we present a mostly self-contained introduction to the field of online convex optimization. We first describe the online learning and online convex optimization settings, proposing an alternative way to formalize both of them so we can make formal claims in a clear and unambiguous fashion while not cluttering the readers understanding. We then present an overview of the main concepts of convex analysis we use, with a focus on building intuition. With respect to algorithms for OCO, we first present and analyze the Adaptive Follow the Regularized Leader (AdaFTRL) together with an analysis which relies mainly on the duality between strongly convex and strongly smooth functions. We then describe the Adaptive Online Mirror Descent (AdaOMD) and the Adaptive Dual Averaging (AdaDA) algorithms and analyze both by writing them as special cases of the AdaFTRL algorithm. Additionally, we show simple sufficient conditions for Eager and Lazy Online Mirror Descent (the non-adaptive counter-parts of AdaOMD and AdaDA) to be equivalent. We also present the well-known AdaGrad and Online Newton Step algorithms as special cases of the AdaReg algorithm, proposed by Gupta, Koren, and Singer, which is itself a special case of the AdaOMD algorithm. We conclude by taking a bird\'s-eyes view of the connections shown throughout the text, forming a ``genealogy\'\' of OCO algorithms, and discuss some possible path for future research. / Otimização Convexa Online (OCO) é uma área na intersecção de teoria dos jogos, otimização e aprendizado de máquina que tem recebido maior atenção recentemente devido a suas recentes aplicações em uma grande gama de áreas como complexidade computacional e esparsificação de grafos. Além dos algoritmos de OCO usualmente terem descrições diretas e poderem ser implementados de forma relativamente simples, muito do recente sucesso da área foi possível graças a um melhor entendimento do cenário e dos algoritmos de OCO que se deu com uso de conhecidas ideias de análise e otimização convexa como a poderosa teoria de dualidade convexa. Nesse texto nós apresentamos uma introdução (em sua maioria auto-contida) à área de otimização convexa online. Primeiro, descrevemos os cenários de aprendizado online e de otimização convexa online, propondo uma forma alternativa de formalizar ambos os modelos de forma que conseguimos enunciar afirmações claras e formais de forma que não atrapalha o entendimento do leitor. Nós então apresentamos um resumo dos principais conceitos e resultados de análise convexa que usamos no texto com um foco em criar intuição sobre os mesmos. Com relação a algoritmos para OCO, nós começamos apresentando o algoritmo Adaptive Follow the Regularized Leader (AdaFTRL) e analisamos sua eficácia com um resultado sobre a dualidade de funções strongly convex e strongly smooth. Na sequência, descrevemos os algoritmos Adaptive Online Mirror Descent (AdaOMD) e Adaptive Dual Averaging (AdaDA), analisando a eficácia de cada um escrevendo eles como instâncias do algoritmo AdaFTRL. Além disso, nós mostramos condições simples para que as versões Eager e Lazy do Online Mirror Descent (que são as versões não adaptativas do AdaOMD e do AdaDA, respectivamente) sejam equivalentes. Também apresentamos os algoritmos AdaGrad e Online Newton Step, bem conhecidos na literatura sobre OCO, como casos especiais do algoritmo AdaReg, esse último um algoritmo proposto por Gupta, Koren, and Singer, que, por sua vez, é um caso especial do algoritmo AdaOMD. Nós concluímos o texto com uma visão global das conexões entre os algoritmos que mostramos durante o texto, formando uma \"genealogia\" de algoritmos para OCO, além de discutirmos possíveis direções futuras de pesquisa.
|
2 |
Régression linéaire et apprentissage : contributions aux méthodes de régularisation et d’agrégation / Linear regression and learning : contributions to regularization and aggregation methodsDeswarte, Raphaël 27 September 2018 (has links)
Cette thèse aborde le sujet de la régression linéaire dans différents cadres, liés notamment à l’apprentissage. Les deux premiers chapitres présentent le contexte des travaux, leurs apports et les outils mathématiques utilisés. Le troisième chapitre est consacré à la construction d’une fonction de régularisation optimale, permettant par exemple d’améliorer sur le plan théorique la régularisation de l’estimateur LASSO. Le quatrième chapitre présente, dans le domaine de l’optimisation convexe séquentielle, des accélérations d’un algorithme récent et prometteur, MetaGrad, et une conversion d’un cadre dit “séquentiel déterministe" vers un cadre dit “batch stochastique" pour cet algorithme. Le cinquième chapitre s’intéresse à des prévisions successives par intervalles, fondées sur l’agrégation de prédicteurs, sans retour d’expérience intermédiaire ni modélisation stochastique. Enfin, le sixième chapitre applique à un jeu de données pétrolières plusieurs méthodes d’agrégation, aboutissant à des prévisions ponctuelles court-terme et des intervalles de prévision long-terme. / This thesis tackles the topic of linear regression, within several frameworks, mainly linked to statistical learning. The first and second chapters present the context, the results and the mathematical tools of the manuscript. In the third chapter, we provide a way of building an optimal regularization function, improving for instance, in a theoretical way, the LASSO estimator. The fourth chapter presents, in the field of online convex optimization, speed-ups for a recent and promising algorithm, MetaGrad, and shows how to transfer its guarantees from a so-called “online deterministic setting" to a “stochastic batch setting". In the fifth chapter, we introduce a new method to forecast successive intervals by aggregating predictors, without intermediate feedback nor stochastic modeling. The sixth chapter applies several aggregation methods to an oil production dataset, forecasting short-term precise values and long-term intervals.
|
3 |
Algorithm Design for Low Latency Communication in Wireless NetworksElAzzouni, Sherif 11 September 2020 (has links)
No description available.
|
4 |
On the Value of Prediction and Feedback for Online Decision Making With Switching CostsMing Shi (12621637) 01 June 2022 (has links)
<p>Online decision making with switching costs has received considerable attention in many practical problems that face uncertainty in the inputs and key problem parameters. Because of the switching costs that penalize the change of decisions, making good online decisions under such uncertainty is known to be extremely challenging. This thesis aims at providing new online algorithms with strong performance guarantees to address this challenge.</p>
<p><br></p>
<p>In part 1 and part 2 of this thesis, motivated by Network Functions Virtualization and smart grid, we study competitive online convex optimization with switching costs. Specifically, in part 1, we focus on the setting with an uncertainty set (one type of prediction) and hard infeasibility constraints. We develop new online algorithms that can attain optimized competitive ratios, while ensuring feasibility at all times. Moreover, we design a robustification procedure that helps these algorithms obtain good average-case performance simultaneously. In part 2, we focus on the setting with look-ahead (another type of prediction). We provide the first algorithm that attains a competitive ratio that not only decreases to 1 as the look-ahead window size increases, but also remains upper-bounded for any ratio between the switching-cost coefficient and service-cost coefficient.</p>
<p><br></p>
<p>In part 3 of this thesis, motivated by edge computing with artificial intelligence, we study bandit learning with switching costs where, in addition to bandit feedback, full feedback can be requested at a cost. We show that, when only 1 arm can be chosen at a time, adding costly full-feedback is not helpful in fundamentally reducing the Θ(<em>T</em>2/3) regret over a time-horizon <em>T</em>. In contrast, when 2 (or more) arms can be chosen at a time, we provide a new online learning algorithm that achieves a significantly smaller regret equal to <em>O</em>(√<em>T</em>), without even using full feedback. To the best of our knowledge, this type of sharp transition from choosing 1 arm to choosing 2 (or more) arms has never been reported in the literature.</p>
|
5 |
[en] ITERATIVE METHODS FOR ROBUST CONVEX OPTIMIZATION / [pt] MÉTODOS ITERATIVOS PARA OTIMIZAÇÃO CONVEXA ROBUSTATHIAGO DE GARCIA PAULA S MILAGRES 24 March 2020 (has links)
[pt] Otimização Robusta é uma das formas mais comuns de considerar in-
certeza nos parâmetros de um problema de otimização. A forma tradicional
de achar soluções robustas consiste em resolver a contraparte robusta de
um problema, o que em muitos casos, na prática, pode ter um custo computacional proibitivo. Neste trabalho, estudamos métodos iterativos para
resolver problemas de Otimização Convexa Robusta de forma aproximada,
que não exigem a formulação da contraparte robusta. Utilizamos conceitos
de Online Learning para propor um novo algoritmo que utiliza agregação
de restrições, demonstrando garantias teóricas de convergência. Desenvolvemos ainda uma modificação deste algoritmo que, apesar de não possuir
tais garantias, obtém melhor performance prática. Por fim, implementamos
outros métodos iterativos conhecidos da literatura de Otimização Robusta
e fazemos uma análise computacional de seus desempenhos. / [en] Robust Optimization is a common paradigm to consider uncertainty
in the parameters of an optimization problem. The traditional way to find
robust solutions requires solving the robust counterpart of an optimiza-
tion problem, which, in practice, can often be prohibitively costly. In this
work, we study iterative methods to approximately solve Robust Convex
Optimization problems, which do not require solving the robust counter-
part. We use concepts from the Online Learning framework to propose a
new algorithm that performs constraint aggregation, and we demonstrate
theoretical convergence guarantees. We then develop a modification of this
algorithm that, although without such guarantees, obtains better practical
performance. Finally, we implement other classical iterative methods from
the Robust Optimization literature and present a computational study of
their performances.
|
Page generated in 0.145 seconds