Spelling suggestions: "subject:"cooperator theory."" "subject:"inoperator theory.""
71 |
Conformal invariant operator product expansionsTratnik, Mike. January 1983 (has links)
No description available.
|
72 |
C*-algebras constructed from factor groupoids and their analysis through relative K-theory and excisionHaslehurst, Mitch 30 August 2022 (has links)
We address the problem of finding groupoid models for C*-algebras given some prescribed K-theory data. This is a reasonable question because a groupoid model for a C*-algebra reveals much about the structure of the algebra. A great deal of progress towards solving this problem has been made using constructions with inductive limits, subgroupoids, and dynamical systems. This dissertation approaches the question with a more specific methodology in mind, with factor groupoids.
In the first part, we develop a portrait of relative K-theory for C*-algebras using the general framework of Banach categories and Banach functors due to Max Karoubi. The purpose of developing such a portrait is to provide a means of analyzing the K-theory of an inclusion of C*-algebras, or more generally of a *-homomorphism between two C*-algebras. Another portrait may be obtained using a mapping cone construction and standard techniques (it is shown that the two presentations are naturally and functorially isomorphic), but for many examples, including the ones considered in the second part, the portrait obtained by Karoubi's construction is more convenient.
In the second part, we construct examples of factor groupoids and analyze their C*-algebras. A factor groupoid setup (two groupoids with a surjective groupoid homomorphism between them) induces an inclusion of two C*-algebras, and therefore the portrait of relative K-theory developed in the first part, together with an excision theorem, can be used to elucidate the structure. The factor groupoids are obtained as quotients of AF-groupoids and certain extensions of Cantor minimal systems using iterated function systems. We describe the K-theory in both cases, and in the first case we show that the K-theory of the resulting C*-algebras can be prescribed through the factor groupoids. / Graduate
|
73 |
Some Problems in Multivariable Operator TheorySarkar, Santanu January 2014 (has links) (PDF)
In this thesis we have investigated two different types of problems in multivariable operator theory. The first one deals with the defect sequence for contractive tuples and maximal con-tractive tuples. These condone deals with the wandering subspaces of the Bergman space and the Dirichlet space over the polydisc. These are described in thefollowing two sections.
(I) The Defect Sequence for ContractiveTuples
LetT=(T1,...,Td)bead-tuple of bounded linear operators on some Hilbert space
H. We say that T is a row contraction, or, acontractive tuplei f the row operator
(Pl refer the abstract pdf file)
|
74 |
The Pettis Integral and Operator TheoryHuettenmueller, Rhonda 08 1900 (has links)
Let (Ω, Σ, µ) be a finite measure space and X, a Banach space with continuous dual X*. A scalarly measurable function f: Ω→X is Dunford integrable if for each x* X*, x*f L1(µ). Define the operator Tf. X* → L1(µ) by T(x*) = x*f. Then f is Pettis integrable if and only if this operator is weak*-to-weak continuous. This paper begins with an overview of this function. Work by Robert Huff and Gunnar Stefansson on the operator Tf motivates much of this paper. Conditions that make Tf weak*-to-weak continuous are generalized to weak*-toweak continuous operators on dual spaces. For instance, if Tf is weakly compact and if there exists a separable subspace D X such that for each x* X*, x*f = x*fχDµ-a.e, then f is Pettis integrable. This nation is generalized to bounded operators T: X* → Y. To say that T is determined by D means that if x*| D = 0, then T (x*) = 0. Determining subspaces are used to help prove certain facts about operators on dual spaces. Attention is given to finding determining subspaces far a given T: X* → Y. The kernel of T and the adjoint T* of T are used to construct determining subspaces for T. For example, if T*(Y*) ∩ X is weak* dense in T*(Y*), then T is determined by T*(Y*) ∩ X. Also if ker(T) is weak* closed in X*, then the annihilator of ker(T) (in X) is the unique minimal determining subspace for T.
|
75 |
Gauge gravity dualities at finite NMabanga, Wandile 30 July 2014 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2014. / In this dissertation we compute the anomalous dimensions for a class of operators, belonging
to the SU(3) sector of the theory, that have a bare dimension of order N. For these
operators the large N limit and the planar limit are distinct and summing only the planar
diagrams will not capture the large N dynamics. Although the spectrum of anomalous
dimensions has been computed for this class of operators, previous studies have neglected
certain terms which were argued to be small. After dropping these terms diagonalizing the
dilatation operator reduces to diagonalizing a set of decoupled oscillators. In this dissertation
we explicitely compute the terms which were neglected previously and show that diagonalizing
the dilatation operator still reduces to diagonalizing a set of decoupled oscillators.
|
76 |
Spectra of the excited giant gravitons from the two loop dilatation operatorAli, Abdelhamid Mohamed Adam 19 September 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. Johannesburg, 2016. / The AdS/CFT correspondence is a conjectured exact duality between type IIB string theory on the
AdS5 S5 background and N = 4 Super Yang-Mills theory, a conformal eld theory (CFT), on
the boundary of the AdS space. A speci c observable of the CFT, which can be read from the two
point correlation function, is the anomalous dimension. In this dissertation we will compute spectra of
anomalous dimensions of excited giant gravitons up to two loops in a speci c limit. We are interested
in the anomalous dimensions because the AdS/CFT correspondence associates them with energies of
states in quantum gravity. We study operators constructed using n Z elds and m Y elds with
n << m: In this case m
n is a small parameter. At the leading order in m
n and at large N, the problem of
determining the anomalous dimensions can be mapped into the dynamics of m non-interacting magnons.
The subleading terms at two loops, computed for the rst time in this dissertation, induce interactions
between the magnons. Even after including this new correction, we nd the BPS operators remain BPS. / MT2016
|
77 |
On the spectrum of positive operatorsUnknown Date (has links)
Spectral theory, mathematical system theory, evolution equations, differential and difference equations [electronic resource] : 21st International Workshop on Operator Theory and Applications, Berlin, July 2010.It is known that lattice homomorphisms and G-solvable positive operators on Banach lattices have cyclic peripheral spectrum (See [17]). In my thesis I prove that positive contractions whose spectral radius is 1 on Banach lattices with increasing norm have cyclic peripheral point spectrum. I also prove that if the Banach lattice is a K B space satisfying the growth conditon and º is an eigenvalue of a positive contraction T such that [º] = 1, then 1 is also an eigenvalue of T as well as an eigenvalue of T¨, the dual of T. I also investigate the conditions on contraction operators on Hilbert lattices and AL-spaces which guanantee that 1 is an eigenvalue. As we know from [17], if T : E-E is a positive ideal irreducible operator on E such the r (T) = 1 is a pole of the resolvent R(º, T), then r (T) is simple pole with dimN (T -r(T)I) and ºper(T) is cyclic. Also all points of ºper(T) are simple poles of the resolvent R(º,T). SInce band irreducibility and º-order continuity do not imply ideal irreducibility [2], we prove the analogous results for band irreducible, º-order continuous operators. / by Cheban P. Acharya. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
|
78 |
Operadores hipercíclicos em espaços vetoriais topológicos / Hypercyclic operators on topological vector spacesCosta, Debora Cristina Brandt 16 March 2007 (has links)
Dado E um espaço vetorial topológico e T um operador linear contínuo em E, diremos que T é hipercíclico se, para algum elemento x pertencente a E, a órbita de x sob T, Orb(x,T)={x, Tx, T^2 x,...}, for densa em E. Nosso objetivo será apresentar alguns resultados sobre hiperciclicidade e observar como alguns espaços comportam-se diante dessa classe de operadores. \\\\ / Let E be a topological vector space and T a continuous linear operator on E. We say that T is hypercyclic if, for some x in E, the orbit of x on T, Orb(x,T)={x, Tx, T^2 x,...}, is dense in E. Our aim will be to study some results about hypercyclicity and to observe how some spaces behave regarding this class of operators.
|
79 |
Operadores hipercíclicos em espaços vetoriais topológicos / Hypercyclic operators on topological vector spacesDebora Cristina Brandt Costa 16 March 2007 (has links)
Dado E um espaço vetorial topológico e T um operador linear contínuo em E, diremos que T é hipercíclico se, para algum elemento x pertencente a E, a órbita de x sob T, Orb(x,T)={x, Tx, T^2 x,...}, for densa em E. Nosso objetivo será apresentar alguns resultados sobre hiperciclicidade e observar como alguns espaços comportam-se diante dessa classe de operadores. \\\\ / Let E be a topological vector space and T a continuous linear operator on E. We say that T is hypercyclic if, for some x in E, the orbit of x on T, Orb(x,T)={x, Tx, T^2 x,...}, is dense in E. Our aim will be to study some results about hypercyclicity and to observe how some spaces behave regarding this class of operators.
|
80 |
Free semigroup algebras and the structure of an isometric tupleKennedy, Matthew January 2011 (has links)
An n-tuple of operators V=(V_1,…,V_n) acting on a Hilbert space H is said to be isometric if the corresponding row operator is an isometry. A free semigroup algebra is the weakly closed algebra generated by an isometric n-tuple V. The structure of a free semigroup algebra contains a great deal of information about V. Thus it is natural to study this algebra in order to study V.
A free semigroup algebra is said to be analytic if it is isomorphic to the noncommutative analytic Toeplitz algebra, which is a higher-dimensional generalization of the classical algebra of bounded analytic functions on the complex unit disk. This notion of analyticity is of central importance in the general theory of free semigroup algebras. A vector x in H is said to be wandering for an isometric n-tuple V if the set of words in the entries of V map x to an orthonormal set. As in the classical case, the analytic structure of the noncommutative analytic Toeplitz algebra is determined by the existence of wandering vectors for the generators of the algebra.
In the first part of this thesis, we prove the following dichotomy: either an isometric n-tuple V has a wandering vector, or the free semigroup algebra it generates is a von Neumann algebra. This implies the existence of wandering vectors for every analytic free semigroup algebra. As a consequence, it follows that every free semigroup algebra is reflexive, in the sense that it is completely determined by its invariant subspace lattice.
In the second part of this thesis we prove a decomposition for an isometric tuple of operators which generalizes the classical Lebesgue-von Neumann-Wold decomposition of an isometry into the direct sum of a unilateral shift, an absolutely continuous unitary and a singular unitary. The key result is an operator-algebraic characterization of an absolutely continuous isometric tuple in terms of analyticity. We show that, as in the classical case, this decomposition determines the weakly closed algebra and the von Neumann algebra generated by the tuple.
|
Page generated in 0.0778 seconds