Spelling suggestions: "subject:"cooperator theory."" "subject:"inoperator theory.""
111 |
Étude et simulation des processus de diffusion biaisés / Study and simulation of skew diffusion processesLenôtre, Lionel 27 November 2015 (has links)
Nous considérons les processus de diffusion biaisés et leur simulation. Notre étude se divise en quatre parties et se concentre majoritairement sur les processus à coefficients constants par morceaux dont les discontinuités se trouvent le long d'un hyperplan simple. Nous commençons par une étude théorique dans le cas de la dimension un pour une classe de coefficients plus large. Nous donnons en particulier un résultat sur la structure des densités des résolvantes associées à ces processus et obtenons ainsi une méthode de calcul. Lorsque cela est possible, nous effectuons une inversion de Laplace de ces densités et donnons quelques fonctions de transition. Nous nous concentrons ensuite sur la simulation des processus de diffusions baisées. Nous construisons un schéma numérique utilisant la densité de la résolvante pour tout processus de Feller. Avec ce schéma et les densités calculées dans la première partie, nous obtenons une méthode de simulation des processus de diffusions biaisées en dimension un. Après cela, nous regardons le cas de la dimension supérieure. Nous effectuons une étude théorique et calculons des fonctionnelles des processus de diffusions biaisées. Ceci nous permet d'obtenir entre autre la fonction de transition du processus marginal orthogonal à l'hyperplan de discontinuité. Enfin, nous abordons la parallélisation des méthodes particulaires et donnons une stratégie permettant de simuler de grand lots de trajectoires de processus de diffusions biaisées sur des architectures massivement parallèle. Une propriété de cette stratégie est de permettre de simuler à nouveau quelques trajectoires des précédentes simulations. / We consider the skew diffusion processes and their simulation. This study are divided into four parts and concentrate on the processes whose coefficients are piecewise constant with discontinuities along a simple hyperplane. We start by a theoretical study of the one-dimensional case when the coefficients belong to a broader class. We particularly give a result on the structure of the resolvent densities of these processes and obtain a computational method. When it is possible, we perform a Laplace inversion of these densities and provide some transition functions. Then we concentrate on the simulation of skew diffusions process. We build a numerical scheme using the resolvent density for any Feller processes. With this scheme and the resolvent densities computed in the previous part, we obtain a simulation method for the skew diffusion processes in dimension one. After that, we consider the multidimensional case. We provide a theoretical study and compute some functionals of the skew diffusions processes. This allows to obtain among others the transition function of the marginal process orthogonal to the hyperplane of discontinuity. Finally, we consider the parallelization of Monte Carlo methods. We provide a strategy which allows to simulate a large batch of skew diffusions processes sample paths on massively parallel architecture. An interesting feature is the possibility to replay some the sample paths of previous simulations.
|
112 |
Asymptotics of the Fredholm determinant corresponding to the first bulk critical universality class in random matrix modelsBothner, Thomas Joachim 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We study the one-parameter family of determinants $det(I-\gamma K_{PII}),\gamma\in\mathbb{R}$ of an integrable Fredholm operator $K_{PII}$ acting on the interval $(-s,s)$ whose kernel is constructed out of the $\Psi$-function associated with the Hastings-McLeod solution of the second Painlev\'e equation. In case $\gamma=1$, this Fredholm determinant describes the critical behavior of the eigenvalue gap probabilities of a random Hermitian matrix chosen from the Unitary Ensemble in the bulk double scaling limit near a quadratic zero of the limiting mean eigenvalue density. Using the Riemann-Hilbert method, we evaluate the large $s$-asymptotics of $\det(I-\gamma K_)$ for all values of the real parameter $\gamma$.
|
113 |
Ergodic properties of operators on spaces of functionsRodríguez Arenas, Alberto 26 March 2020 (has links)
[ES] El objetivo de esta tesis es estudiar las propiedades ergódicas (acotación en potencias, ergodicidad media y ergodicidad media uniforme) de operadores definidos en varios espacios de funciones. En un espacio Hausdorff localmente convexo E, un operador T\in\L(E) es llamado acotado en potencias si el conjunto de sus iteradas es equicontinuo. Las medias de Cesàro de T son
T_[n] = 1/n (T+T^2+...+ T^m), n\in\N.
El operador T se dice ergódico en media si la sucesión (T_[n])_n converge puntualmente y se dice uniformemente ergódico en media si la sucesión converge uniformemente en conjuntos acotados.
En el Capítulo 1 se estudia el operador de multiplicación cuando está definido sobre espacios ponderados de funciones continuas y sobre sus límites inductivos y proyectivos. Trabajamos sobre un espacio topológico Hausdorff, normal y localmente compacto X. Dada una función continua phi, el operador de multiplicacion se define como M_ phi: f -> phi f.
Una función continua v se llama peso si es estrictamente positiva. Los espacios (de Banach) ponderados de funciones continuas son
C_v:= {f\in C(X) : ||f||_v:=\sup_(x\in X) v(x)|f(x)|< infty},
C_v ^0 :={f\in C(X) : vf se anula en el infinito},
con la norma ||.||_v.
En las Secciones 1.3 y 1.4 se centra la atención en límites indutivos y proyectivos de los espacios de la Sección 1.2. Si V=(v_n)_n es una familia decreciente de pesos, entonces los limites inductivos ponderados de funciones continuas son VC=ind _n C_v_n y V_0C=ind _n C^0_v_n. Si A=(a_n)_n es una familia creciente de pesos, los límites proyectivos ponderados de funciones continuas son CA=proj_n C_a_n y CA_0=proj _n C^0_a_n. El comportamiento es diferente para los límites de los C_v_n (resp. C_a_n) del de los límites de los C^0_v_n (resp. C^0_a_n).
En la Sección 1.5 se determinan completamente el espectro y el espectro de Waelbroeck del operador de multiplicación. En la última Sección 1.6 se compara la topología del conjunto de multiplicadores entre límites proyectivos con la inducida por la topología de operadores de convergencia uniforme en acotados.
El Capítulo 2 se centra en estudiar espacios ponderados de sucesiones y sus límites inductivos y proyectivos. Una sucesión v=(v(i))_i \in \C^\N se llama peso si es estrictamente positiva. Los espacios de Banach ponderados de sucesiones considerados son l_p(v), 1<= p<= infty y c_0(v).
Dada una matriz de K\"othe A=(a_n)_n, el espacio escalonado de orden 1<= p<= infty se define como
proj _n l _p (a_n) y proj _n c_0 (a_n).
El espacio co-escalonado de orden 1<= p<= infty se define, para una familia decreciente de pesos V=(v_n)_n, como
ind_n l _p (v_n) y ind_n c_0 (v_n).
En las Secciones 2.2 y 2.3 se estudian las propiedades ergódicas y espectrales del operador de multiplicación. En la Sección 2.4 se caracteriza cuándo el operador de multiplicación es acotado o compacto, de manera similar a la continuidad. En la Sección 2.5, como en la Sección 1.6, la topología del conjunto de multiplicadores entre espacios escalonados se compara con la inducida por la topología de operadores de convergencia uniforme en acotados. También se estudia la topología del conjunto de operadores acotados. En la última Sección 2.6, los resultados de las secciones anteriores se aplican a los espacios de series de potencias, como casos particulares de los espacios escalonados.
El Capítulo 3 trata el operador de composición dado por una aplicación holomorfa del disco unidad abierto complejo en sí mismo, considerado entre diferentes espacios de Banach de funciones holomorfas. Si phi : \D - > \D es holomorfa, el operador de composición es C_phi: f ->f o phi.
En la Sección 3.2 se dan condiciones necesarias y suficientes para las propiedades ergódicas del operador de composición definido en un espacio de Banach de funciones holomorfas general asumiendo una o varias propiedades dadas. Los resultados de la Sección 3.2 se aplican en la Sección 3.3 a espacios cl� / [CA] L'objectiu d'aquesta tesi és estudiar les propietats ergòdiques (fitació en potències, ergodicitat mitjana i ergodicitat mitjana uniforme) d'operadors definits en diversos espais de funcions. En un
espai Hausdorff localment convex E, un operador T\in\L(E) s'anomena fitat en potències si el conjunt de les seues iterades és equicontinu. Les mitjanes de Cesàro de T són
T_[n] = 1/n (T+T^2+...+ T^m), n\in\N.
L'operador T és ergòdic en mitjana si la successió (T_[n])_n convergeix puntualment i és uniformement ergòdic en mitjana si la successió convergeix uniformement en conjunts fitats.
Al Capítol 1 s'estudia l'operador de multiplicació quan està definit sobre espais ponderats de funcions contínues i sobre els seus límits inductius i projectius. Treballem sobre un espai topològic Hausdorff, normal i localment compacte X. Donada una funció contínua phi, l'operador de multiplicació es defineix com a M_ phi: f -> phi f.
Una funció contínua v s'anomena pes si és estrictament positiva. Els espais (de Banach) ponderats de funcions contínues són
C_v:= {f\in C(X) : ||f||_v:=\sup_(x\in X) v(x)|f(x)|< infty},
C_v ^0 :={f\in C(X) : vf s'anul·la a l'infinit},
amb la norma ||.||_v.
A les Seccions 1.3 i 1.4 es para atenció als límits inductius i projectius dels espais de la Secció 1.2. Si $V=(v_n)_n$ és una família decreixent de pesos, aleshores els límits inductius ponderats de
funcions contínues són VC=ind _n C_v_n y V_0C=ind _n C^0_v_n. Si A=(a_n)_n és una família creixent de pesos, aleshores els límits projectius ponderats de funcions contínues CA=proj_n C_a_n y CA_0=proj _n C^0_a_n. El comportament és diferent per als límits dels C_v_n (resp. C_a_n) del dels límits dels C^0_v_n (resp. C^0_a_n).
A la Secció 1.5 es determinen completament l'espectre i l'espectre de Waelbroeck de l'operador de multiplicació. A la darrera Secció 1.6 es compara la topologia del conjunt de multiplicadors entre límits projectius amb la induïda per la topologia d'operadors de convergència uniforme en fitats.
Al Capítol 2 es dedica a l'estudi d'espais ponderats de successions i els seus límits inductius i projectius. Una successió v=(v(i))_i \in \C^\N s'anomena pes si és estrictament positiva. Els espais de Banach ponderats de successions considerats l_p(v), 1<= p<= infty i c_0(v).
Donada una matriu de Köthe A=(a_n)_n, l'espai esglaonat d'ordre 1<= p<= infty es defineix com a
proj _n l _p (a_n) y proj _n c_0 (a_n).
L'espai co-esglaonat d'ordre 1<= p<= infty es defineix, per a una família decreixent de pesos V=(v_n)_n, com a
ind_n l _p (v_n) i ind_n c_0 (v_n).
A les Seccions 2.2 i 2.3 s'estudien les propietats ergòdiques i espectrals de l'operador de multiplicació. A la Secció 2.4 es caracteritza quan l'operador de multiplicació és fitat o compacte, d'un mode similar a la continuïtat. A la Secció 2.5, com a la Secció 1.6, la topologia del conjunt de multiplicadors entre espais esglaonats es compara amb la induïda per la topologia d'operadors de convergència uniforme en fitats. També s'estudia la topologia del conjunt d'operadors fitats. A la darrera Secció 2.6, els resultats de les seccions anteriors s'apliquen als espais de sèries de potències, com casos particulars dels espais esglaonats.
El Capítol 3 estudia l'operador de composició donat per una aplicació holomorfa del disc unitat obert complex en sí mateix, considerat entre dife\-rents espais de Banach de funcions holomorfes. Si phi : \D - > \D és holomorfa, aleshores l'operador de composició és C_phi: f ->f o phi.
A la Secció 3.2 es donen condicions necessàries i suficients per a les propietats ergòdiques de l'operador de composició definit en un espai de Banach de funcions holomorfes general assumint una o més propietats donades. Els resultats de la Secció 3.2 s'apliquen a la Secció 3.3 per a espais clàssics de funcions holomorfes. / [EN] The aim of this thesis is to study the ergodic properties of some operators defined on several spaces of functions. In a locally convex Hausdorff space E, an operator T\in L(E) is called power bounded if the set of its iterates is equicontinuous. The Cesàro means of T are
T_[n] = 1/n (T+T^2+...+ T^m), n\in\N.
The operator T is called mean ergodic if the sequence (T_[n])_n converges pointwise and it is called uniformly mean ergodic if the sequence converges uniformly on bounded sets.
In Chapter 1, the multiplication operator is studied when defined on weighted spaces of continuous functions and their inductive and projective limits. We work with a Hausdorff, normal, locally compact topological space X. Given a continuous function phi (a symbol), the multiplication operator is M_ phi: f -> phi f.
A continuous function v is a weight if it is strictly positive. The (Banach) weighted spaces of continuous functions are
C_v:= {f\in C(X) : ||f||_v:=\sup_(x\in X) v(x)|f(x)|< infty},
C_v ^0 :={f\in C(X) : vf vanishes at infinity},
with the norm ||.||_v.
The Sections 1.3 and 1.4 are devoted to inductive and projective limits of the spaces in Section 1.2. If V=(v_n)_n is a decreasing family of weights, the weighted inductive limits of continuous functions are VC=ind _n C_v_n and V_0C=ind _n C^0_v_n. If A=(a_n)_n is an increasing family of weights, the weighted projective limits of continuous functions are CA=proj_n C_a_n and CA_0=proj _n C^0_a_n. The behaviour is different for the limits of the C_v_n (resp. C_a_n) and the limits of the C^0_v_n (resp. C^0_a_n).
In Section 1.5 the spectrum and the Waelbroeck spectrum are completely determined. In the final Section 1.6 the topology of the set of multipliers between projective limits is compared with the one induced by the operator topology of uniform convergence on bounded sets.
The work of Chapter 2 is devoted to weighted sequence spaces and their inductive and projective limits. A sequence v=(v(i))_i \in \C^\N is called a weight if it is strictly positive. The weighted Banach spaces of sequences considered are l_p(v), 1<= p<= infty and c_0(v).
Given A=(a_n)_n, a Köthe matrix, the echelon space of order 1<= p<= infty is defined by
proj _n l _p (a_n) and proj _n c_0 (a_n).
The co-echelon space of order 1<= p<= infty is defined, for a decreasing family of weights V=(v_n)_n, by
ind_n l _p (v_n) and ind_n c_0 (v_n).
In the Sections 2.2 and 2.3 ergodic and spectral properties of the multiplication operator are studied. In Section 2.4 it is characterized when the multiplication operator is bounded or compact, in similar terms than continuity. In Section 2.5, as in Section 1.6, the topology of the set of multipliers between echelon spaces is compared with the one induced by the operator topology of uniform convergence on bounded sets. Also the topology of the set of bounded multiplication operators is studied. In the final Section 2.6, the results of the previous sections are applied to the power series spaces, as particular cases of echelon spaces.
Chapter 3 deals with the composition operator given by a holomorphic self-map of the complex open unit disc, when considered between different Banach spaces of holomorphic functions. If phi : \D - > \D is holomorphic, the composition operator is C_phi: f ->f o phi.
In Section 3.2 necessary and sufficient conditions are given for ergodic properties of a composition operator defined on a general Banach space of holomorphic functions under the assumption of one or many of given properties.
The results of Section 3.2 are applied in Section 3.3 to classical spaces of holomorphic functions, particularly, weighted Bergman spaces of infinite type H_v and H_v^0, Bloch spaces B_p and B_p ^0, Bergman spaces A^p and Hardy spaces H^p. / Rodríguez Arenas, A. (2020). Ergodic properties of operators on spaces of functions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/139519
|
114 |
Weighted Composition Operators on Spaces of Analytic FunctionsGomez Orts, Esther 30 May 2022 (has links)
[ES] El objetivo de esta tesis es estudiar distintas propiedades de los operadores de composición ponderados en diferentes espacios ponderados de funciones analíticas.
Dado un peso v estrictamente positivo y continuo en el disco complejo, consideramos unos ciertos espacios de Banach de funciones analíticas en el discto complejo. Estos espacios son los conjuntos de las funciones holomorfas en el disco f tales que el supremo, de los z en el disco, de v(z)|f(z)| es finito. También consideramos los espacios de las funciones holorfas f que cumplen que v(z)|f(z)| tiende a cero cuando |z| se acerca a 1.
Dada una sucesión de pesos, trabajamos con los espacios formados por las intersecciones y uniones de los espacios de Banach ponderados determinados por los pesos de la sucesión. El espacio resultante de la intersección es un espacio de Fréchet y es el límite proyectivo de los espacios de Banach citados. Este espacio está provisto de la topología del límite proyectivo. El espacio resultante de la unión es un espacio LB (límite de Banach), y es el límite inductivo de los espacios citados, con la topología del límite inductivo. Cuando la sucesión de pesos viene determinada por los pesos (1-|z|)^n con n natural, el espacio resultante de la unión se llama espacio de Korenblum, que también es un límite inductivo.
En la tesis estudiamos la continuidad, compacidad e invertibilidad de los operadores de composición ponderados en los espacios descritos arriba. También estudiamos algunas propiedades de su espectro y de su espectro puntual. / [CA] L'objectiu d'aquesta tesi és estudiar distintes propietats dels operadors de composició ponderats en diferents espais ponderats de funcions analítiques. Donat un pes v estrictament positiu i continu en el disc del pla complex, considerem uns certs espais de Banach de funcions analítiques en el disc complex. Aquests espais són els conjunts de les funcions holomorfes en el disc f tals que el suprem, dels z en el disc, de v(z)|f(z)| és finit. També considerem els espai de les funcions que verifiquen que v(z)|f(z)| tendeix a zero quan |z| s'apropa a 1. Donada una successió de pesos, treballem amb els espais formats per les interseccions i unions dels espais de Banach ponderats determinats pels pesos de la successió. L'espai resultant de la intersecció és un espai de Fréchet, i és el límit projectiu dels espais de Banach esmentats. Aquest espai està prove ̈ıt de la topologia del l ́ımit projectiu. L'espai resultant de la unió és un espai LB (límit de Banach), i és el límit inductiu dels espais esmentats, amb la topologia del límit inductiu. Quan la successió de pesos està determinada pels pesos (1-|z|)^n amb n natural, l'espai resultant de la unió s'anomena espai de Korenblum, que també és un límit inductiu. En al tesi estudiem la continu ̈ıtat, , compacitat i invertibilitat de l'operador de composició ponderat en els espais descrits abans. També estudiem algunes propietats del seu espectre i del seu espectre puntual. / [EN] The aim of this thesis is to study some properties of the weighted composition operators on different weighted spaces of analytic functions.
Given a weight v strictly positive and continuous on the complex disc, we consider certain Banach spaces of analytic functions on the complex disc. These spaces are the sets of the holomorphic functions on the disc f such that the supremum, when z is in the disc, of v(z)|f(z)| is finite. We also consider the spaces of the holomorphic functions f such that v(z)|f(z)| tends to 0 whenever |z| goes to 1.
Given a sequence of weights, we work with the spaces described by the intersection or union of the weighted Banach spaces determined by the weights in the sequence. The space of the intersection is a Fréchet space and it is the projective limit of the mentioned Banach spaces. This space is endowed with the projective limit topology. The space given by the union is an LB-space (limit of Banach), and it is the inductive limit of the mentioned spaces, with the inductive limit topology. When the sequence is given by the weights (1-|z|)^n with n natural, the space of the union is called Korenblum space, which is also an inductive limit.
In the thesis we study the continuity, compactness and invertibility of the weighted composition operators on the spaces described above. We also study some properties of the spectrum and point spectrum. / Gomez Orts, E. (2022). Weighted Composition Operators on Spaces of Analytic Functions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/183028
|
115 |
Generalized Multinomial CRR Option Pricing Model and its Black-Scholes type limit / Verallgemeinertes Multinomial CRR Option Preis Modell und seine Black-Scholes Typ BegrenzungKan-Dobrowsky, Natalia 11 September 2005 (has links)
Wir bauen das verallgemeinerte diskrete Modell des zu Grunde liegenden Aktienpreisprozesses, der als eine bessere Annäherung an den Aktienpreisprozess dient als der klassische zufällige Spaziergang. Das verallgemeinerte Multinomial-Modell des Option-Preises in Bezug auf das neue Modell des Aktienpreisprozesses wird erhalten. Das entsprechende asymptotische Verfahren erlaubt, die verallgemeinerte Black-Scholes Formel zu erhalten, die die Formel als einen Begrenzungsfall des verallgemeinerten diskreten Option-Preis Modells bewertet.
|
116 |
Advanced Stochastic Signal Processing and Computational Methods: Theories and ApplicationsRobaei, Mohammadreza 08 1900 (has links)
Compressed sensing has been proposed as a computationally efficient method to estimate the finite-dimensional signals. The idea is to develop an undersampling operator that can sample the large but finite-dimensional sparse signals with a rate much below the required Nyquist rate. In other words, considering the sparsity level of the signal, the compressed sensing samples the signal with a rate proportional to the amount of information hidden in the signal. In this dissertation, first, we employ compressed sensing for physical layer signal processing of directional millimeter-wave communication. Second, we go through the theoretical aspect of compressed sensing by running a comprehensive theoretical analysis of compressed sensing to address two main unsolved problems, (1) continuous-extension compressed sensing in locally convex space and (2) computing the optimum subspace and its dimension using the idea of equivalent topologies using Köthe sequence.
In the first part of this thesis, we employ compressed sensing to address various problems in directional millimeter-wave communication. In particular, we are focusing on stochastic characteristics of the underlying channel to characterize, detect, estimate, and track angular parameters of doubly directional millimeter-wave communication. For this purpose, we employ compressed sensing in combination with other stochastic methods such as Correlation Matrix Distance (CMD), spectral overlap, autoregressive process, and Fuzzy entropy to (1) study the (non) stationary behavior of the channel and (2) estimate and track channel parameters. This class of applications is finite-dimensional signals. Compressed sensing demonstrates great capability in sampling finite-dimensional signals. Nevertheless, it does not show the same performance sampling the semi-infinite and infinite-dimensional signals. The second part of the thesis is more theoretical works on compressed sensing toward application. In chapter 4, we leverage the group Fourier theory and the stochastical nature of the directional communication to introduce families of the linear and quadratic family of displacement operators that track the join-distribution signals by mapping the old coordinates to the predicted new coordinates. We have shown that the continuous linear time-variant millimeter-wave channel can be represented as the product of channel Wigner distribution and doubly directional channel. We notice that the localization operators in the given model are non-associative structures. The structure of the linear and quadratic localization operator considering group and quasi-group are studied thoroughly. In the last two chapters, we propose continuous compressed sensing to address infinite-dimensional signals and apply the developed methods to a variety of applications. In chapter 5, we extend Hilbert-Schmidt integral operator to the Compressed Sensing Hilbert-Schmidt integral operator through the Kolmogorov conditional extension theorem. Two solutions for the Compressed Sensing Hilbert Schmidt integral operator have been proposed, (1) through Mercer's theorem and (2) through Green's theorem. We call the solution space the Compressed Sensing Karhunen-Loéve Expansion (CS-KLE) because of its deep relation to the conventional Karhunen-Loéve Expansion (KLE). The closed relation between CS-KLE and KLE is studied in the Hilbert space, with some additional structures inherited from the Banach space. We examine CS-KLE through a variety of finite-dimensional and infinite-dimensional compressible vector spaces. Chapter 6 proposes a theoretical framework to study the uniform convergence of a compressible vector space by formulating the compressed sensing in locally convex Hausdorff space, also known as Fréchet space. We examine the existence of an optimum subspace comprehensively and propose a method to compute the optimum subspace of both finite-dimensional and infinite-dimensional compressible topological vector spaces. To the author's best knowledge, we are the first group that proposes continuous compressed sensing that does not require any information about the local infinite-dimensional fluctuations of the signal.
|
Page generated in 0.0965 seconds