Spelling suggestions: "subject:"théorie dess semigroupes"" "subject:"théorie dess semigroups""
1 |
Etudes théoriques et numériques des équations primitives de l'océan sans viscositéRousseau, Antoine 14 June 2005 (has links) (PDF)
Cette thèse regroupe un ensemble d'analysesmathématiques et de simulations numériques relatives aux équations primitives de l'océan (EP) sans viscosité, en domaine borné. Les EP sont des équations bien connues de la mécanique des fluides, qui s'appuient sur les approximations hydrostatique et de Boussinesq. On rappelle en introduction pourquoi ces équations, considérées avec des conditions aux limites de type local, sont mal posées. Dans une première partie (chapitres 1 à 4), on s'intéresse à une modification de l'équation hydrostatique au moyen d'un terme de friction proportionnel à un petit paramètre delta. On démontre des résultats d'existence, d'unicité et de régularité des solutions avant d'étudier le comportement de ces solutions lorsque delta tend vers $0$. Des résultats numériques montrent que des couches limites et des réflexions se produisent aux frontières du domaine. Les phénomènes observés numériquement sont alors confirmés par une preuve rigoureuse effectuée grâce à la théorie des correcteurs. Dans une seconde partie (chapitres 5 et 6), on revient à la formulation hydrostatique d'origine des EP, et l'on propose un jeu de conditions aux limites transparentes pour le système linéarisé. Une preuve du caractère bien posé du problème aux limites ainsi obtenu justifie l'introduction de telles conditions aux limites, qui sont ensuite implémentées dans une simulation numérique confirmant que les phénomènes de couches limites et de réflexions aux frontières sont ainsi évités, aussi bien sur les équations non linéaires que sur le linéarisé.
|
2 |
Equations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier / Stokes and Navier-Stokes equations with Navier boundary conditionsRejaiba, Ahmed 11 November 2014 (has links)
Résumé : Cette thèse est consacrée à l'étude des équations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier dans un ouvert borné de . Le manuscrit ici est composé de trois chapitres. Dans le premier, nous considérons les équations de Stokes stationnaires avec des conditions aux limites de Navier. Nous démontrons l'existence, l'unicité et la régularité de la solution d'abord dans un cadre hilbertien puis dans le cadre de la théorie . Nous traitons aussi le cas de solutions très faibles. Dans le deuxième chapitre, nous nous intéressons aux équations de Navier-Stokes avec la condition de Navier. Sous certaines hypothèses sur les données, nous démontrons l'existence de solution faible dans , avec en utilisant un théorème du point fixe appliqué à un problème d'Oseen. Nous démontrons examinons ensuite les questions de régularité des solutions en particulier dans . Dans le dernier chapitre, nous étudions le problème d'évolution de Stokes avec la condition de Navier. La résolution de ce problème se fait au moyen de la théorie des semi-groupes analytiques qui jouent un rôle important pour établir l'existence et l'unicité de la solution dans le cas homogène. Nous traitons le cas du problème non homogène par le biais des puissances imaginaires de l'opérateur de Stokes. / This thesis is devoted to the study of the Stokes equations and Navier-Stokes equations with Navier boundary conditions in a bounded domain of . The work contains three chapters: In the first chapter, we consider the stationary Stokes equations with Navier boundary condition. We show the existence, uniqueness and regularity of the solution in the Hilbert case and in the -theory. We prove also the case of very weak solutions. In the second chapter, we focus on the Navier-Stokes equations with the Navier boundary condition. We show the existence of the weak solution in , with by a fixed point theorem over the Oseen equation. We show also the existence of the strong solution in . In chapter three, we study the evolution Stokes problem with Navier boundary condition. For this, we apply the analytic semi-groups theory, which plays a crucial role in the study of existence and uniqueness of solution in the case of the homogeneous evolution problem. We treat the case of non-homogeneous problem through imaginary powers of the Stokes operator.
|
3 |
Étude théorique de méthodes numériques pour les systèmes de réaction-diffusion; application à des équations paraboliques non linéaires et non localesRibot, Magali 11 December 2003 (has links) (PDF)
On s'intéresse dans cette thèse à l'étude de méthodes numériques pour les systèmes de réaction-diffusion. Tout d'abord, on étudie le schéma par régularisation du résidu et ses extrapolations; ce schéma introduit un préconditionneur en espace lors de la discrétisation en temps. On prouve la stabilité en norme usuelle et la convergence en norme d'énergie de cette méthode et on l'applique au préconditionnement de méthodes spectrales par des méthodes d'éléments finis. Cette application nécessite le calcul d'asymptotiques précises des polynômes de Legendre et de leurs extrema. On prouve aussi la convergence et l'ordre deux d'une méthode de splitting semi-discrétisée en temps pour les systèmes de réaction-diffusion, l'approximation de Peaceman-Rachford. Enfin, on applique ces méthodes à la simulation d'une équation parabolique non linéaire pour modéliser la croissance de grains et à une équation parabolique non locale venant de la mécanique statistique et modélisant les systèmes autogravitants de fermions.
|
4 |
Étude et simulation des processus de diffusion biaisés / Study and simulation of skew diffusion processesLenôtre, Lionel 27 November 2015 (has links)
Nous considérons les processus de diffusion biaisés et leur simulation. Notre étude se divise en quatre parties et se concentre majoritairement sur les processus à coefficients constants par morceaux dont les discontinuités se trouvent le long d'un hyperplan simple. Nous commençons par une étude théorique dans le cas de la dimension un pour une classe de coefficients plus large. Nous donnons en particulier un résultat sur la structure des densités des résolvantes associées à ces processus et obtenons ainsi une méthode de calcul. Lorsque cela est possible, nous effectuons une inversion de Laplace de ces densités et donnons quelques fonctions de transition. Nous nous concentrons ensuite sur la simulation des processus de diffusions baisées. Nous construisons un schéma numérique utilisant la densité de la résolvante pour tout processus de Feller. Avec ce schéma et les densités calculées dans la première partie, nous obtenons une méthode de simulation des processus de diffusions biaisées en dimension un. Après cela, nous regardons le cas de la dimension supérieure. Nous effectuons une étude théorique et calculons des fonctionnelles des processus de diffusions biaisées. Ceci nous permet d'obtenir entre autre la fonction de transition du processus marginal orthogonal à l'hyperplan de discontinuité. Enfin, nous abordons la parallélisation des méthodes particulaires et donnons une stratégie permettant de simuler de grand lots de trajectoires de processus de diffusions biaisées sur des architectures massivement parallèle. Une propriété de cette stratégie est de permettre de simuler à nouveau quelques trajectoires des précédentes simulations. / We consider the skew diffusion processes and their simulation. This study are divided into four parts and concentrate on the processes whose coefficients are piecewise constant with discontinuities along a simple hyperplane. We start by a theoretical study of the one-dimensional case when the coefficients belong to a broader class. We particularly give a result on the structure of the resolvent densities of these processes and obtain a computational method. When it is possible, we perform a Laplace inversion of these densities and provide some transition functions. Then we concentrate on the simulation of skew diffusions process. We build a numerical scheme using the resolvent density for any Feller processes. With this scheme and the resolvent densities computed in the previous part, we obtain a simulation method for the skew diffusion processes in dimension one. After that, we consider the multidimensional case. We provide a theoretical study and compute some functionals of the skew diffusions processes. This allows to obtain among others the transition function of the marginal process orthogonal to the hyperplane of discontinuity. Finally, we consider the parallelization of Monte Carlo methods. We provide a strategy which allows to simulate a large batch of skew diffusions processes sample paths on massively parallel architecture. An interesting feature is the possibility to replay some the sample paths of previous simulations.
|
5 |
Théorie des semi-groupes pour les équations de Stokes et de Navier-Stokes avec des conditions aux limites de type Navier / Semi-group theory for the Stokes and Navier-Stokes equations with Navier-type boundary conditionsAl Baba, Hind 10 June 2015 (has links)
Cette thèse est consacrée à l'étude théorique mathématique des équations de Stokes et de Navier-Stokes dans un domaine borné de R^3 en utilisant la théorie des semi-groupes. Trois différents types de conditions seront considérés : des conditions aux limites de Navier, de type-Navier et des conditions qui dépendent de la pression. Ce manuscrit est composé de six chapitres. Tout d'abord nous commençons par un état de l'art sur les équations de Navier-Stokes. Ensuite nous démontrons l'analyticité du semi-groupe de Stokes avec chacune des conditions ci-dessus. Ceci permet de résoudre le problème d'évolution en utilisant la théorie des semi-groupes. Nous étudions également les puissances complexes et fractionnaires de l'opérateur de Stokes pour lesquelles nous démontrons certaines propriétés et estimations. Ces résultats seront utilisés dans la suite pour obtenir des estimations de type L^p-L^q pour le semi-groupe de Stokes, un résultat de régularité L^p-L^q maximale pour le problème de Stokes inhomogène et des résultats d'existence et d'unicité locale pour le problème non-linéaire. Après nous étudions le problème d'évolution de Stokes. Outre la régularité L^p-L^q maximale, nous démontrons l'existence des solutions faibles u∈L^q (0,T; W^(1,p) (Ω)), fortes u∈L^q (0,T; W^(2,p) (Ω)) et très faibles u∈L^q (0,T; L^p (Ω)) du problème de Stokes. On termine par l'étude du problème de Navier-Stokes avec chacune des conditions aux limites citées ci-dessus. Tout d'abord, en utilisant les estimations L^p-L^q on démontre l'existence d'une unique solution locale u qui vérifieu∈BC([0,T_0 ); L_(σ,τ)^p (Ω))∩L^q (0,T_0; L_(σ,τ)^r (Ω)), q,r>p, 2/q+3/r=3/p.De plus, pour une donnée initiale petite, on obtient l'existence globale des solutions. Ensuite en estimant le terme non-linéaire en fonction des puissances fractionnaires de l'opérateur de Stokes on démontre la régularité de la solution. / This thesis is devoted to the mathematical theoretical study of the Stokes and Navier-Stokes equations in a bounded domain of R^3 using the semi-group theory. Three different types of boundary conditions will be considered: Navier boundary conditions, Navier-type boundary conditions and boundary condition involving the pressure. This manuscript contains six chapters. We prove first the analyticity of the Stokes semi-group with each of the boundary conditions stated above. This allows us to solve the time dependent Stokes problem using the semi-group theory. We will study also the complex and fractional powers of the Stokes operator for which we prove some properties and estimations. These results will be used in the sequel to prove an estimate of type L^p-L^q for the Stokes semigroup, as well as the maximal L^p-L^q regularity for the inhomogeneous Stokes problem and an existence result for the non-linear problem. Next we study the time dependent Stokes problem, besides the maximal L^p-L^q regularity, we prove the existence of weak u∈L^q (0,T; W^(1,p) (Ω)), strong u∈L^q (0,T; W^(2,p) (Ω)) and very weak u∈L^q (0,T; L^p (Ω)) solutions to the Stokes problem. We end with the study of the Navier-Stokes problem. First using the L^p-L^q estimate for the Stokes semi-group we prove the existence of a unique local in time mild solution for the Navier-Stokes problem that verifies u∈BC([0,T_0 ); L_(σ,τ)^p (Ω))∩L^q (0,T_0; L_(σ,τ)^r (Ω)), q,r>p, 2/q+3/r=3/p.Furthermore, for some initial data the solution is global in time. Finally, by estimating the non-linear term as a function of the fractional powers of the Stokes operator we prove that the solution is regular.
|
6 |
Etudes mathématiques et numériques des problèmes paraboliques avec des conditions aux limitesKarimou Gazibo, Mohamed 06 December 2013 (has links) (PDF)
Cette thèse est centrée autour de l'étude théorique et de l'analyse numérique des équations paraboliques non linéaires avec divers conditions aux limites. La première partie est consacrée aux équations paraboliques dégénérées mêlant des phénomènes non-linéaires de diffusion et de transport. Nous définissons des notions de solutions entropiques adaptées pour chacune des conditions aux limites (flux nul, Robin, Dirichlet). La difficulté principale dans l'étude de ces problèmes est due au manque de régularité du flux pariétal pour traiter les termes de bords. Ceci pose un problème pour la preuve d'unicité. Pour y remédier, nous tirons profit du fait que ces résultats de régularités sur le bord sont plus faciles à obtenir pour le problème stationnaire et particulièrement en dimension un d'espace. Ainsi par la méthode de comparaison "fort-faible" nous arrivons à déduire l'unicité avec le choix d'une fonction test non symétrique et en utilisant la théorie des semi-groupes non linéaires. L'existence de solution se démontre en deux étapes, combinant la méthode de régularisation parabolique et les approximations de Galerkin. Nous développons ensuite une approche directe en construisant des solutions approchées par un schéma de volumes finis implicite en temps. Dans les deux cas, on combine les estimations dans les espaces fonctionnels bien choisis avec des arguments de compacité faible ou forte et diverses astuces permettant de passer à la limite dans des termes non linéaires. Notamment, nous introduisons une nouvelle notion de solution appelée solution processus intégrale dont l'objectif, dans le cadre de notre étude, est de pallier à la difficulté de prouver la convergence vers une solution entropique d'un schéma volumes finis pour le problème de flux nul au bord. La deuxième partie de cette thèse traite d'un problème à frontière libre décrivant la propagation d'un front de combustion et l'évolution de la température dans un milieu hétérogène. Il s'agit d'un système d'équations couplées constitué de l'équation de la chaleur bidimensionnelle et d'une équation de type Hamilton-Jacobi. L'objectif de cette partie est de construire un schéma numérique pour ce problème en combinant des discrétisations du type éléments finis avec les différences finies. Ceci nous permet notamment de vérifier la convergence de la solution numérique vers une solution onde pour un temps long. Dans un premier temps, nous nous intéressons à l'étude d'un problème unidimensionnel. Très vite, nous nous heurtons à un problème de stabilité du schéma. Cela est dû au problème de prise en compte de la condition de Neumann au bord. Par une technique de changement d'inconnue et d'approximation nous remédions à ce problème. Ensuite, nous adaptons cette technique pour la résolution du problème bidimensionnel. A l'aide d'un changement de variables, nous obtenons un domaine fixe facile pour la discrétisation. La monotonie du schéma obtenu est prouvée sous une hypothèse supplémentaire de propagation monotone qui exige que la frontière libre se déplace dans les directions d'un cône prescrit à l'avance.
|
7 |
Etudes mathématiques et numériques des problèmes paraboliques avec des conditions aux limites / Mathematical and numerical studies of parabolic problems with boundary conditionsKarimou Gazibo, Mohamed 06 December 2013 (has links)
Cette thèse est centrée autour de l’étude théorique et de l’analyse numérique des équations paraboliques non linéaires avec divers conditions aux limites. La première partie est consacrée aux équations paraboliques dégénérées mêlant des phénomènes non-linéaires de diffusion et de transport. Nous définissons des notions de solutions entropiques adaptées pour chacune des conditions aux limites (flux nul, Robin, Dirichlet). La difficulté principale dans l’étude de ces problèmes est due au manque de régularité du flux pariétal pour traiter les termes de bords. Ceci pose un problème pour la preuve d’unicité. Pour y remédier, nous tirons profit du fait que ces résultats de régularités sur le bord sont plus faciles à obtenir pour le problème stationnaire et particulièrement en dimension un d’espace. Ainsi par la méthode de comparaison "fort-faible" nous arrivons à déduire l’unicité avec le choix d’une fonction test non symétrique et en utilisant la théorie des semi-groupes non linéaires.L’existence de solution se démontre en deux étapes, combinant la méthode de régularisation parabolique et les approximations de Galerkin. Nous développons ensuite une approche directe en construisant des solutions approchées par un schéma de volumes finis implicite en temps. Dans les deux cas, on combine les estimations dans les espaces fonctionnels bien choisis avec des arguments de compacité faible ou forte et diverses astuces permettant de passer à la limite dans des termes non linéaires. Notamment, nous introduisons une nouvelle notion de solution appelée solution processus intégrale dont l’objectif, dans le cadre de notre étude, est de pallier à la difficulté de prouver la convergence vers une solution entropique d’un schéma volumes finis pour le problème de flux nul au bord.La deuxième partie de cette thèse traite d’un problème à frontière libre décrivant la propagation d’un front de combustion et l’évolution de la température dans un milieu hétérogène. Il s’agit d’un système d’équations couplées constitué de l’équation de la chaleur bidimensionnelle et d’une équation de type Hamilton-Jacobi. L’objectif de cette partie est de construire un schéma numérique pour ce problème en combinant des discrétisations du type éléments finis avec les différences finies. Ceci nous permet notamment de vérifier la convergence de la solution numérique vers une solution onde pour un temps long. Dans un premier temps, nous nous intéressons à l’étude d’un problème unidimensionnel. Très vite,nous nous heurtons à un problème de stabilité du schéma. Cela est dû au problème de prise en compte de la condition de Neumann au bord. Par une technique de changement d’inconnue et d’approximation nous remédions à ce problème. Ensuite, nous adaptons cette technique pour la résolution du problème bidimensionnel. A l’aide d’un changement de variables, nous obtenons un domaine fixe facile pour la discrétisation. La monotonie du schéma obtenu est prouvée sous une hypothèse supplémentaire de propagation monotone qui exige que la frontière libre se déplace dans les directions d’un cône prescrit à l’avance. / This thesis focuses on the theoretical study and numerical analysis of parabolic equations with boundary conditions.The first part is devoted to degenerate parabolic equation which combines features of a hyperbolic conser-vation law with those of a porous medium equation. We define suitable notions of entropy solutions foreach of the boundary conditions (zero-flux, Robin, Dirichlet). The main difficulty in these studies residesin the formulation of the adequate notion of entropy solution and in the proof of uniqueness. There isa technical difficulty due to the lack of regularity required to treat the boundaries terms. We take ad-vantage of the fact that boundary regularity results are easier to obtain for the stationary problem, inparticular in one space dimension. Thus, using strong-weak uniqueness approach we get the uniquenesswith the choice of a non-symmetric test function and using the nonlinear semigroup theory. The exis-tence of solution is proved in two steps, combining the method of parabolic regularization and Galerkinapproximations. Next, we develop a direct approach to construct approximate solutions by an implicitfinite volume scheme. In both cases, the estimates in the appropriately chosen functional spaces are com-bined with arguments of weak or strong compactness and various tricks to pass to the limit in nonlinearterms. In the appendix, we propose a result of existence of strong trace of a solution for the degenerateparabolic problem. In another appendix of independent interest, we introduce a new concept of solutioncalled integral process solution. We exploit it to overcome the difficulty of proving the convergence ofour finite volume scheme to an entropy solution for the zero-flux boundary problem.The second part of this thesis deals with a free boundary problem describing the propagation of a com-bustion front and the evolution of the temperature in a heterogeneous medium. So we have a coupledproblem consisting of the heat equation of bidimensional space and a Hamilton-Jacobi equation. The ob-jective is to construct a numerical scheme and to verify that the numerical solution converges to a wavesolution for a long time. Recall that an existence of wave solution for this problem was already proven inan analytical framework. At first, we focus on the study of a one-dimensional problem. Here, we face aproblem of stability of the scheme. This is due to a difficulty of taking into account the Neumann boun-dary condition. Through a technique of change of unknown, we can propose a monotone scheme. Wealso adapt this technique for solving two-dimensional problem. Using a change of variables, we obtaina fixed domain where the discretization becomes easy. The monotony of the scheme is proved under anadditional assumption of monotone propagation that requires the free boundary moves in the directionsof a cone given beforehand.
|
Page generated in 0.0781 seconds