Spelling suggestions: "subject:"0ptical crystals"" "subject:"aoptical crystals""
1 |
Développement par voie Sol-Gel de méthodes d'assemblage de cristaux à optique non linéaire pour applications laser / Sol-Gel method for non-linear optical cristals bondingSraïki, Guillaume 23 January 2015 (has links)
Dans cette thèse CIFRE nous avons élaboré une solution originale d’assemblage de cristaux optiques pour applications lasers avec les sociétés Cristal Laser et Oxxius. Nous avons ensuite optimisé notre composition de colle ainsi que le procédé d’encollage des cristaux avec la réalisation d’un robot par nos partenaires industriels. De nombreux tests d’assemblage ont été effectués avec des homo-assemblages de paires de cristaux de SiO2, Quartz, YAG, KTP, LBO, BBO et RTP. Ces homo-assemblages sont ensuite traités thermiquement pour stabiliser notre interface de colle et nos résultats sont satisfaisants. Nous avons également réalisé des hétéro-assemblages avec des paires de cristaux de nature différente parmi les cristaux précédemment étudiés comme YAG/Quartz ou SiO2/KTP. Les résultats que nous obtenons avec ces hétéro-composites semblent indiquer que le différentiel de CTE entre les pièces assemblée limite fortement le bon déroulement des traitements thermiques. Nous avons donc étudié le CTE ainsi que le comportement de notre interface de colle en fonction de la température afin de proposer une composition et un traitement adapté à la réalisation de ces hétéro-composites. / In this CIFRE thesis we elaborate a bonding solution, with Cristal Laser and Oxxius companies, for non-linear optical crystals for laser applications. We had to optimize solution’s composition and the bonding process, this resulted in the creation of a bonding robot by our industrial partners. Numerous homo-assemblies bonding tests has been realized with the following crystal pairs of SiO2, Quartz, YAG, KTP, LBO, BBO and RTP. Those homo-assemblies have been thermally treated to stabilize our bonding solution interface and we obtained relatively good results. We also bonded hetero-assemblies with different crystal pairs like YAG/Quartz or SiO2/KTP. The results we get with these hetero-composites suggest that the difference in CTE between the assembled parts greatly limits the smooth heat treatments. We therefore investigated the CTE and the behavior of our adhesive interface depending on the temperature to provide adapted composition and treatment to the realization of these hetero-composites.
|
2 |
Growth And Characterization Of Technologically Important Nonlinear Optical Crystals: Cesium Lithium Borate And Potassium Di-Deuterium PhosphateKarnal, Ashwani Kumar 07 1900 (has links)
Present day advanced technologies heavily rely on one particular class of matter, i.e.
the crystals. It is the periodic nature of the atoms and the properties arising due to the periodicity in crystals that is exploited to meet various technological feats. The technological revolutions in the semiconductor, optics and communication industries are the examples. The anisotropy in the crystals gives them enhanced properties as required in the field of non-linear optics. The field of non-linear optics became practically a reality
after the invention of lasers. The coherent and monochromatic optical beams in the
visible and ultraviolet ranges are in high demand due to their application in the fields like material processing, semiconductor lithography, laser micromachining, laser spectroscopy, photochemical synthesis, inertial confinement fusion and other basic scientific studies. In this thesis, work on the growth and characterization of two
technologically important non-linear optical crystals has been carried out after developing the necessary instrumentation and some novel techniques for synthesis and growth. Also, studies on the glassy nature of one of the crystals have been carried out.
This thesis consists of seven chapters. The first chapter gives a brief introduction to
the nonlinear optical phenomenon, crystal growth and glassy state. Instrumentation is the backbone of crystal research technology. Without precision growth equipments large size crystals cannot be grown and without precision characterization instrumentation no
conclusion regarding the quality and usefulness of the grown material can be drawn. The work reported in Chapter 2 describes the instrumentation developed for the growth, processing and characterization of crystals grown by solution and melt growth
techniques. In low temperature solution growth, crystal growth workstations have been
developed using tanks (made of acrylic), heating elements, and stirring propellers.
Cooling coils have been inserted into the designed water bath to grow crystals below
ambient also. This bath has an advantage to work over a wide range of temperatures, so
that maximum retrieval of the material is possible. The growth of large crystals is usually hindered due to spurious nucleation precipitating during the growth process. A novel nucleation-trap crystallizer has been designed and developed that facilitates the
continuation of the growth run in spite of extra nucleation precipitating after seeding. In this crystallizer, the spurious nuclei and any other particles generated after the filtration are forced into a well, and the growth of spurious nuclei is arrested by manipulating the temperature of this trap. Achieving adequate heat flow and mass flow profiles is of vital importance for
growing good quality crystals. An optimized stirring procedure for the solution or melt is needed for ensuring the desired supply of growth units to the crystal-nutrient interface, and for transporting away any debris of the crystal-growth process. An ACRT set up has been designed and developed.
For the growth of crystals by the flux technique and from direct melt, a crystal puller has been designed and developed. The crystal puller consists of a crystal rotation unit, slow and fast pulling mechanisms and a control unit. The pulling assembly is protected from damage caused by possible human errors through interlock mechanisms. The vibration at the shaft of the seed rotation assembly has been minimized by using a dc motor for rotation. A versatile triangular / square wave oscillator has been designed for developing a dc motor control. By implementing this control, the speed of the motor does not vary with supply-voltage variations. A quarter-step switching logic sequence is introduced for stepper motors, which is used for the slow UP/DOWN movement of the puller. This puller can be controlled locally by a control panel provided with the puller, or through a PC remotely by bypassing the local control. Additionally, for the processing and characterization of the grown DKDP crystals, a closed-loop thread-cutter, a ferroelectric loop tracer, and a computer-controlled system for measuring the half-wave voltage have been developed.
A novel mercury encapsulant seeding technique that facilitates the processing of
solution with immersed seed is invented and has been described in Chapter 3. This
technique allows processing of solution with the seed inside the growth chamber, and still
avoids contamination of the solution and formation of crystal clusters that are normally generated when seed is inserted after processing of the solution. DKDP and KAP crystal seeds have been used to check the dissolution of seeds, if any, when immersed in pure water for several hours and at high temperatures after introducing the seal. It has been observed that the mercury seal does not allow creeping of water into the seed holder, and there is no dissolution of the seed. This technique has been practically implemented for the growth of crystals from aqueous solution and its usefulness has been demonstrated by
growing ammonium acid phthalate, potassium acid phthalate and potassium di-deuterium
phosphate crystals.
Nonlinear-optical crystals find major use in inertial-confinement fusion (ICF) experiments. For such applications, nonlinear crystals with very large damage-resistance are needed. Alternatively, crystals with moderate damage resistance but large size can be used for frequency-conversion for efficient plasma experiments. Potassium di-hydrogen phosphate, KH2PO4 (KDP) and its deuterated analog, K(DxH1-x)2PO4 (DKDP) are at present the only nonlinear optical crystals which can be grown to large sizes and are suitable for ICF studies. Also, solid-state light valves, light deflectors, and laser communication devices require large and perfect tetragonal DKDP crystals, with high deuterium concentration for easier operation. Chapter 4 describes the growth and characterization of DKDP crystals. DKDP crystals have been grown by all the three techniques i.e. conventional, platform and novel mercury encapsulant seeding techniques. Details about a new approach for the synthesis of DKDP solution have been given. A comparative study of the grown crystals by mercury-encapsulant technique and other techniques is described. Habit modification was observed due to the placement of seed crystals at an off-centre position and orientation in mercury encapsulant seeding
technique and has been discussed. The grown crystals have been characterized for
homogeneity, dislocations, transmission, DSC, rockng curve, etc.
Due to the higher photon energies and the ability to be more tightly focused, coherent
radiations of shorter wavelength (deep-UV) are in demand. The photon energies in this
region are sufficient for bond-breaking processes in many materials, and find applications in fields like material processing, semiconductor lithography, laser micromachining, laser spectroscopy, photochemical synthesis, etc. Although excimer lasers (XeCl, KrF, ArF etc.) produce significant power in the deep-UV region, these laser systems involve corrosive gases, and are bulky, apart from requiring regular maintenance. A maintenance-free, compact, solid-state laser is preferable. But this, in turn, requires an efficient NLO crystal in that region. CLBO is one such crystal. Growth of CLBO crystals has been carried out by the flux-growth technique using B2O3-deficient flux, as well as from stoichiometric melt and has been discussed in Chapter 5. It was observed that the
nucleation of material on platinum wire or spontaneous nucleation was difficult to
achieve in spite of high supercooling. After forcing cracks into the mass deposited on
platinum wire nucleation could be achieved. The growth of crystals was carried out on
seeds with different orientations. Transmission studies, etch-pit studies and harmonic-generation experiments were performed on the grown crystals.
The glass-forming tendency of CLBO has been studied and reported in Chapter 6. DTA experiments show that CLBO melt generally transforms to glass on cooling. Even at a cooling rate as low as 1°C/min, the material does not crystallize but transforms into glass. Ergodicity making and glass transition temperatures were determined for glassy CLBO. Since neither the crystallization peak nor the melting peak was observed in DTA experiments during the heating part of thermal cycle for glassy CLBO, a new approach of seeded crystallization was adopted in the calorimetric experiments to achieve crystallization. Since the size of added nuclei is already above the critical radius, the onset of crystallization peaks is independent of the critical-radius energy barrier. Kissenger method was applied to determine the activation energy of seeded-
crystallization process. The transformation of glass CLBO to the crystalline phase is
mediated by dendrites. Possibility of bulk crystal growth from the glassy state has been
discussed, and a novel idea of surface crystallization is proposed.
Chapter 7 summarizes the work carried out and projects the scope for future work.
|
3 |
Optinių dangų ir lazerinių elementų šviesos sklaida plačiame spektro ruože / The Light Scattering in Optical Coatings and Laser Components in a Wide Spectral RangeMaciulevičius, Mindaugas 04 February 2010 (has links)
Šiame darbe yra aptariama sklaidos matavimo sistema sukurta plačioje spektro srityje reikalingiems matavimams atlikti. Joje naudojami parametriniai šviesos generatoriai bei harmonikų generatoriai, kaupinami nanosekundinės trukmės impulsais, ir apibendrinami sklaidos tyrimai, atlikti įvairių tipų optinėse dangose ir netiesiniuose optiniuose kristaluose, naudojant derinamojo bangos ilgio lazerinius impulsus. Pirmą kartą buvo ištirti naujų netiesinėje optikoje perspektyvių LiInS2 ir LiInSe2 kristalų sklaidos nuostoliai infraraudonojoje srityje. Taip pat parodyta, kad koherentinės sklaidos tomografijos metodas, anksčiau taikytas puslaidininkinių kristalų tūriniams defektams tirti, yra tinkamas ir netiesinėje optikoje naudojamų kristalų kokybės tyrimams. / This work describes the system for the light scattering measurements in a wide spectral range, which uses the light parametric oscillators and harmonic generators pumped with a nanosecond pulses and summarizes the research in various types of coatings on optical components and inside nonlinear optical crystals. The total scattering losses for the first time were characterized in the infrared region for a new promising in nonlinear optics LiInS2 and LiInSe2 crystals. It was shown that the laser scattering tomography, previously used for investigation of volume defects in semiconductor crystals, can be applied in the nonlinear optical quality control.
|
4 |
The Light Scattering in Optical Coatings and Laser Components in a Wide Spectral Range / Optinių dangų ir lazerinių elementų šviesos sklaida plačiame spektro ruožeMaciulevičius, Mindaugas 04 February 2010 (has links)
This work describes the system for the light scattering measurements in a wide spectral range, which uses the light parametric oscillators and harmonic generators pumped with a nanosecond pulses and summarizes the research in various types of coatings on optical components and inside nonlinear optical crystals. The total scattering losses for the first time were characterized in the infrared region for a new promising in nonlinear optics LiInS2 and LiInSe2 crystals. It was shown that the laser scattering tomography, previously used for investigation of volume defects in semiconductor crystals, can be applied in the nonlinear optical quality control. / Šiame darbe yra aptariama sklaidos matavimo sistema sukurta plačioje spektro srityje reikalingiems matavimams atlikti. Joje naudojami parametriniai šviesos generatoriai bei harmonikų generatoriai, kaupinami nanosekundinės trukmės impulsais, ir apibendinami sklaidos tyrimai, atlikti įvairių tipų optinėse dangose ir netiesiniuose optiniuose kristaluose, naudojant derinamojo bangos ilgio lazerinius impulsus. Pirmą kartą buvo ištirti naujų netiesinėje optikoje perspektyvių LiInS2 ir LiInSe2 kristalų sklaidos nuostoliai infraraudonojoje srityje. Taip pat parodyta, kad koherentinės sklaidos tomografijos metodas, anksčiau taikytas puslaidininkinių kristalų tūriniams defektams tirti, yra tinkamas ir netiesinėje optikoje naudojamų kristalų kokybės tyrimams.
|
5 |
Growth and Physical Properties of Biaxial Nonlinear Optical Crystals of Ascorbic Acid FamilyRaghavendra Rao, K January 2014 (has links) (PDF)
Saccharides, a class of organic materials, are potential candidates for nonlinear optical applications. Ascorbic acid is a sugar acid and is classified as a monosaccharide. The molecule of ascorbic acid has two chiral centers and, therefore, four stereoisomers. Among them, two are naturally occurring compounds; L-ascorbic acid and D-isoascorbic acid. From these two acids various salts and other derivatives could be synthesized. In this thesis, four compounds of the ascorbic acid family were selected for detailed study based on their nonlinearity, chemical and physical stability and their crystallization characteristics. The thesis is organized into seven chapters. The first chapter covers the theoretical background of nonlinear optics, especially, second harmonic generation. Second chapter details the experimental techniques and methodology adopted. Chapter 3 discusses the crystal structure, growth, physical and nonlinear optical properties of Lithium Disoascorbate monohydrate (LDAM). Detailed analysis of refractive index measurements employing Brewsters angle method and determination of phase matching curves, effective nonlinear coefficient, walk off angle etc are given. In Chapter 4, investigations on Sodium D-isoascorbate monohydrate (NDAM) are presented. Detailed characterization of the crystals including thermal, optical, dielectric properties are carried out. Analyses of dielectric dispersion based on Cole-Cole equation are discussed. Comprehensive studies on laser damage of the crystals are discussed. Chapter 5 discusses the nonlinear optical properties of the monoclinic D-isoascorbic acid (DIA). Chapter 6 presents studies on the triclinic Lithium L-ascorbate dihydrate (LLA) crystals. The crystals exhibit intense non-collinear second harmonic rings as they possesses large birefringence coupled with high second order nonlinear coefficients. The SHG conversion efficiency of these crystals is 15 times that of KDP. In the final chapter, a comprehensive summary of the work carried out is presented along with scope for further investigations.
|
6 |
Growth And Physical Properties Of Nonlinear Optical Crystals CsH(C4H4O5)H2O, CsLiB6O10 And Near-Stoichiometric LiNbO3Reddy, Babu J N 05 1900 (has links)
NLO materials have been researched for nearly five decades from the point of view of understanding the basic mechanisms and also in the pursuit of new materials possessing improved properties. Materials satisfying a set of physico-chemical properties such as wide transmission range, good mechanical hardness, high po-larizablity, noncentric crystal structure, good chemical stability, etc are the ones which are sought after. Several organic and inorganic molecules have been synthe-sized with the hope of finding materials that possess the desired NLO properties. Most of the organic materials are known to possess high figure of merit. However, their poor mechanical strength and needle like growth habit are hindrances to practical applications. Inorganic NLO materials have better mechanical properties but many of them possess small deff and laser induced damage threshold. Semi-organic NLO materials are intended to have the merits of both organic and inorganic counterparts. In this investigation, three important NLO crystals, viz cesium hydrogen L-malate monohydrate (CsLM, CsH[C4H4O5]H2O), cesium lithium borate(CLBO,CsLiB6O10)and near stoichiometric lithium niobate codoped with Nd and Zn (Nd:Zn:LiNbO3)are chosen for detailed study.
The thesis is organized into 6 chapters. First chapter contains the theoretical background of the physical and chemical phenomena including a review of nonlin-ear optics, second harmonic generation, multiphoton absorption & refraction con-cepts, single crystal growth, principles of ferroelectricity and the scope of the work involved. For better connectivity, a brief review of the earlier work carried out on the chosen materials is given in the beginning of each chapter. The second chapter discusses the methodology of work and experimental details used in the present study.
The third chapter deals with studies on CsLM, the new organometallic NLO crystal. Its structure, electro-optical properties and dielectric properties in FIR region are reported very recently. This material is also reported to show a phase transition at 50 0C though not much is understood about its nature. Further details of crystal growth conditions, nonlinear optical properties and laser damage thresholds are little known on this newly discovered NLO material. In this chapter detailed crystal growth studies and investigations of physical properties are presented. During growth, CsLM crystals manifest in platy and prismatic morphologies depending on level of super saturation invoked. The maximum dimensions of the grown crystal are 20 x15 x35 mm3. It has very good transmission in the range, 250-1300 nm and dislocation density of ≈104/cm2 . The dc conductivity measurements place this crystal between an ionic conductor and a dielectric. Dielectric properties show considerable frequency dispersion and axial anisotropy with є′ being the highest along the polar b axis. Maker fringes experiment reveals that CsLM possesses good second harmonic generation efficiency, an order of magnitude higher than KDP. It also has high laser damage threshold for fundamental and second harmonic wavelengths of Nd:YAG pulsed laser. TGA/DTA experiments are performed on the crystals grown below and above the reported transition temperature(labelled as CsLM and Anhydrous-CsLM respectively). The present investigations on Anhydrous-CsLM show that it crystallizes in a structure different from that of CsLM and the nature of the reported ′phase transition ′is driven by sluggish hydration and dehydration processes.
Recently UV transparent nonlinear optical materials were evaluated for the fab-rication of all solid state UVlasers and CLBO is one such NLO material. It crystal-lizes in non-centrosymmetric tetragonal space group, I42d. It is highly transparent in the wide range of wavelengths from 180 to 2500 nm and has good deff. It pos-sesses very good angular and spectral bandwidth tolerances compared to its contemporaries such as lithium triborate(LBO) and beta barium borate(β-BBO). There is, however, a problem associated with this material that it cracks when exposed to atmosphere due to its hygroscopic nature. This chapter details the fabrication of the required instrumentation to grow single crystals of this material and the study of possible solutions to avoid cracking problem besides its new nonlinear properties. Since the melts of borate materials are known to be highly viscous, the crystal growth apparatus should have the options for tuning the parameters like seed and crucible rotation rates, temperature isotherms, slow pulling rate, etc. Keeping the above in mind, a high temperature top seeded solution growth unit was designed and fabricated inhouse. Highly transparent single crystals of CLBO were grown using the above unit which were characterized for the defects/dislocations using X-ray topography. The average dislocation density estimated is ≈103/cm2. The nonlinear optical absorption(NLA) and refraction(NLR) properties are studied. Z-scan experiments reveal that five photon absorption(5PA )is responsible for nonlinear absorption when the wavelength and pulse width are 800 nm and 110 fs respectively. For 532 nm and 6 ns pulses, dielectric breakdown occurs before NLA could occur due to high pulse influence. CLBO is found to show negative nonlinear refraction under high intensities. Hygroscopicity of CLBO is attributed to the entry of water through the channels that are present along a and b axes, which in turn, cause cracking. Doping, is expected to modify the size of the channels. Since certain dopants are found to improve the stability of CLBO, substitution of Cs site with Zn and Gd is carried out to reduce the size of channels. As there was no significant improvement with doping experiments, an alternate approach is attempted by coating with SiO2 thin films on the optical elements to prevent the water molecules from entering lattice through the channels. The results and discussion of the above studies are presented in the chapter 4.
Lithium niobate is the most widely used single crystal for fabricating optical modulators, waveguides, SAW devices and optical parametric oscillators. Although single crystals of this ferroelectric material were grown way back in 1965 by Ball-man and Fedulov independently, most of the work till the beginning of 90’s was concentrated on crystals with congruent composition(CLN) because there were no suitable methods available for growing homogeneous single crystals of stoichiomet-ric lithium niobate(SLN). Recently, Double Crucible Czochralski method with au-tomatic powder feeding technique and top seeded solution growth technique with
Li2O and K2O fluxes are shown to produce SLN crystals. In this work, top seeded solution growth technique with58.6 mol% Li2O composition(self flux) is adopted to grow SLN crystals and the details of the growth and investigations are presented in chapter 5. Initially, crystal growth of SLN, and Zn & Nd codoped SLN are de-scribed. The maximum dimesions of the SLN crystals are 20 mm diameter and 35 mm length. CLN crystals(30mm diameter and 70 mm length) are also grown for comparison. The growth rate for SLN crystals is approximately 25 times lower than that for CLN. The maximum amount of Zn added to the melt is 2.5 mol%. For Nd codoping, four concentrations (0.2, 0.5, 0.9, 1.5 mol%) have been chosen with Zn concentration in the melt fixed at 2.5 mol%. Addition of Zn is to enhance the pho-torefractive damage threshold and Nd to use SLN as laser host. Structural studies on the grown crystals using powder X-ray diffraction show no additional phases. The domain structure analysis by chemical etching studies reveal that it is sensitive to doping and temperature gradient above the melt surface. The grown crystals possess good transmission in the UV-Vis-NIR region. Apparent increase in the dielectric constant found in doped crystals is attributed to space charge effect. In Nd:Zn codoped SLN, the parameters corresponding to lasing (Judd-Ofelt parameters, radiative transition probabilities, branching ratios) have been evaluated and found to be better than those obtained for codoped CLN. Surface laser damage and photorefractive damage thresholds are enhanced by 2 and 4 orders of magnitude respectively for the crystals grown with 2.5 mol% Zn in the melt. Nonlinear absorption and refraction studies using femtosecond Z-scan experiments reveal a correlation between the nonstoichiometric defects and nonlinear absorption & refraction coefficients. Polarization switching studies carried out on pure and Zn doped samples indicate an enhancement in switching rate at elevated temperatures.
In the sixth and final chapter, a comprehensive summary of the present work and the scope for further investigations related to this work are given.
|
7 |
Studies On Growth And Physical Properties Of Certain Nonlinear Optical And Ferroelectric CrystalsVanishri, S 01 1900 (has links)
Nonlinear optics and ferroelectrics have been recognized for several decades as promising fields with important applications in the area of opto-electronics, photonics, memory devices, etc. High performance electro-optical switching elements for telecommunications and optical information processing are based on the material properties. Hence, there is always a continuous search for new and better materials. In this thesis we have investigated the growth and physical properties of four crystals viz. two NLO and two ferroelectric crystals.
This thesis consists of eight chapters. The first chapter gives an overview of historical perspectives of nonlinear optical phenomenon, ferroelectricity and materials developed therein. The second chapter gives a brief description of the underlying theories of crystal growth, nonlinear optics and ferroelectricity. A major portion of this chapter consists of gist of the earlier work carried out on compounds of our interest viz. urea L-malic acid, sodium p-nitrophenolate dihydrate, glycine phosphite and lithium niobate. Synthesis, growth, crystal structure details and some physical properties of these materials are briefed.
The third chapter describes the experimental techniques needed to grow as well as characterize these crystals. The experiments are performed on single crystals grown in the laboratory using the solution growth setup and Czochralski crystal puller. These growth units are described in detail. Preliminary characterization techniques like powder Xray diffraction, optical transmission, scanning electron microscopy, Vickers and Knoop hardness are described briefly. Various experimental methods viz. dielectric, polarization reversal, photoacoustic spectroscopy and laser induced damage for characterizing the grown crystals are explained.
Urea L-malic acid (ULMA) is a new NLO organic material which is reported to exhibit second harmonic efficiency three times that of the widely used inorganic crystal, KDP. Hence, this material is selected for detailed investigation and the results obtained are discussed in chapter 4. This chapter contains details of single crystal growth and characterization of ULMA. The crystals are grown by slow cooling technique. The complete morphology of the crystal is evaluated using optical goniometry. The grown crystals are characterized for their optical and thermal properties. The defect content in the grown crystal is evaluated by chemical etching. As the surface damage of the crystal by high power lasers limits its performance in NLO applications, a detailed laser induced damage studies are performed on ULMA. Both single shot and multiple shot damage threshold values for 1064 nm and 532 nm laser radiation are determined and correlated with the mechanical hardness. In addition, the thermal diffusivity and thermal conductivity of ULMA along various crystallographic orientations are evaluated using laser induced photoacoustic spectroscopy and the results are interpreted in terms of crystal bonding environment.
Another NLO crystal taken up for study is sodium p-nitrophenolate dihydrate (NPNa 2H2O), a semiorganic material. This crystal is a very efficient NLO material and has the advantages of both organics and inorganics. Earlier investigations on growth of NPNa.2H2O in various solvents have shown methanol as the most suitable solvent for growth. Growth from aqueous solution was discarded as it did not yield crystals which are stable. In the present investigation, stable, NLO active NPNa.2H2O crystals are obtained using aqueous solution itself by varying the crystallization conditions and exploring the suitable temperature range. The details of growth and characterization form the subject of fifth chapter. The grown crystals are characterized using optical transmission, XRD and thermo gravimetric analysis. Later, laser induced damage threshold is evaluated for both 1064 nm and 532 nm laser radiation and compared wit the methanol grown ones. A possible mechanism of damage is given.
The sixth and seventh chapters deal with growth and characterization of ferroelectric materials namely glycine phosphite and lithium niobate respectively. Glycine phosphite is a low temperature ferroelectric crystal which is well studied in terms of its dielectric and ferroelectric properties. But very few radiation damage studies are reported. The effect of ionizing radiation on ferroelectrics is of considerable interest as it significantly modifies the physical properties of these materials. In the present investigation, effects of X-ray irradiation (_ = 1.5418 °A) on the lattice parameters, dielectric constant, loss tangent, polarization switching characteristics and domain dynamics of glycine phosphite are investigated. X-ray irradiation is performed in the non-polar phase of the sample. The effect as a function of duration of exposure is studied. X-ray irradiation in GPI has resulted in drastic reduction in _ values and shift in transition temperature towards lower temperatures. X-ray irradiation on polarization switching properties of the crystal are also investigated. The activation energy and threshold field of switching increase with the irradiation time. The behaviour of domain wall mobility is quite different from that exhibited by other well known ferroelectrics. These results are discussed in chapter 6 and a possible explanation for the unusual behaviour of domain wall mobility is given. The defect generated is identified as PO32− radical by electron paramagnetic measurement.
Lithium niobate (LiNbO3) is an extensively studied material in terms of its NLO and ferroelectric properties. This material has high piezoelectric coupling coefficients along certain directions which makes it suitable for wide band surface acoustic wave applications. Hence there is a demand for good quality, single domain YZ-LiNbO3 substrates. Chapter 7 describes the growth of Z-pulled congruent LiNbO3 using Czochralski technique. Large single crystals of diameter 30 mm and length 80 mm are grown from congruent composition employing Czochralski technique. The grown crystals are multidomain and hence electric field poling is performed to get single domain crystals. Their subsequent characterization for SAW devices upto 200 MHz was performed and compared with the imported substrate.
The general conclusions are given in chapter 8 along with possible future work that could be performed on these crystals.
|
8 |
Nichtlineare Optik mit ultrakurzen Laserpulsen: Suszeptibilität dritter Ordnung und kleine Polaronen sowie Interferenz und Holographie verschiedenfarbiger LaserpulseBadorreck, Holger 13 June 2016 (has links)
In der vorliegenden Arbeit werden die nichtlinearen optischen Eigenschaften der Materialien Lithiumniobat und Di-Zinn-Hexathiohypodiphosphat aufgrund der Suszeptibilität 3. Ordnung und kleiner Polaronen untersucht. Zudem wird gezeigt, dass die Interferenz verschiedenfarbiger Laserpulse die Aufzeichnung von statischen und dynamischen holographischen Gittern ermöglicht. Ein Teil dieser Arbeit ist in den im Anhang angegebenen 6 Publikationen bereits veröffentlicht.
Lithiumniobat wird mit einer Erweiterung des Z-Scan Experiments untersucht, welches die Pulslängenabhängige Messung der nichtlinearen Absorption und der nichtlinearen Brechungsindexänderung ermöglicht. Dabei konnte festgestellt werden, dass bei sehr kurzen Pulslängen von 70 fs ein Effekt der Polaronen auf die nichtlineare Absorption vernachlässigbar ist und die Zwei-Photonen-Absorption die nichtlineare Absorption dominiert. Mit größerer Pulslänge gibt es allerdings Abweichungen zwischen der Theorie der Zwei-Photonen-Absorption und den Messergebnissen. Mit der Entwicklung eines Polaronen-Anregungs-Modells, welches eine polaronische Absorption aufgrund wiederholtem optisch induziertem Hopping annimmt, konnte dieser Effekt konsistent erklärt werden. Die Messungen der nichtlinearen Brechungsindexänderung lassen darauf schließen, dass sowohl freie Ladungsträger als auch kleine Polaronen neben der Suszeptibilität 3. Ordnung einen Einfluss auf die Brechungsindexänderung haben, da eine nichtlineare Abhängigkeit von der Intensität auch bei Pulslängen von 70 fs festgestellt werden konnte.
Analog dazu konnte in Di-Zinn-Hexathiohypodiphosphat ein großer Zwei-Photonen-Absorptionskoeffizient festgestellt werden, welcher für Photonenenergien nahe der Bandkante Werte zeigt, die größer sind als theoretischen Überlegungen zeigen. Eine transiente Absorption nach optischer Anregung, gemessen durch ein Anreg-Abtast-Experiment, sowie Literatur legen nahe, dass in Di-Zinn-Hexathiohypodiphosphat gebundene Lochpolaronen durch optische Anregung entstehen können.
Durch den hohen Zwei-Photonen-Absorptionskoeffizienten konnte das Aufzeichnen eines kontrastreichen, dynamischen Amplitudengitters mittels Femtosekundenpulsen gezeigt und nachgewiesen werden.
Die Kürze der Femtosekundenpulse ermöglicht aber nicht nur das Aufzeichnen eines Zwei-Photonen-Absorptionsgitters aufgrund der hohen Intensitäten, sondern erlaubt zudem die Beobachtung von Interferenz zwischen verschiedenfarbigen Pulsen. In der Zeitspanne der Pulslänge beträgt die Bewegung der Interferenzstreifen, welche in der Größenordnung der Lichtgeschwindigkeit liegt, nur ein Bruchteil der Streifendistanz, sodass das Interferenzmuster eingefroren und beobachtbar erscheint. Somit lassen sich statische Hologramme in holographischen Filmen, wie auch dynamische Hologramme aufzeichnen. Über ein dynamisches holographisches Gitter mittels Zwei-Photonen-Absorption konnte so eine Frequenzkonversion durch Dopplerverschiebung in Lithiumniobat gezeigt werden.
|
Page generated in 0.1184 seconds