• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 30
  • 17
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 136
  • 136
  • 38
  • 35
  • 34
  • 26
  • 21
  • 20
  • 19
  • 16
  • 15
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Optické metody pro měření průtoku založené na kontrastu speklí / Methods for flow estimation using laser speckle contrast imaging

Jahůdková, Michaela January 2017 (has links)
This thesis deals with introduction to optical method called laser speckle contrast imaging (LSCI). The thesis contains a description of the basic theory that is related to the method, the LSCI own principle, the characteristics of this technique, its applications and also a description of various variants of LSCI. The second part of the thesis deals with the modification of acquisition software to be suitable for measurement of multi-exposure LSCI (MESI), verification of this method by experiment and conclusions of evaluated of data.
92

Des illusions tactiles à l’intégration spatiotemporelle dans le cortex somesthésique primaire : influence de la temporalité des stimuli cutanés sur leur représentation corticale / From tactile illusions to spatiotemporal integration in the primary somatosensory cortex : impact of the timing of cutaneous stimuli on their cortical representation

Corbo, Julien 12 December 2018 (has links)
Plusieurs illusions tactiles suggèrent que la temporalité des stimulations cutanées dans une séquence modifie leur perception spatiale. S’ils sont assez proches dans l’espace, plus l’intervalle temporel entre deux stimuli est court, plus la distance perçue entre eux est courte. Lorsque les deux stimuli sont présentés simultanément, on observe une perception fusionnée, unique et centrée entre les positions réelles. Ainsi, le système de perception tactile semble utiliser le temps entre les stimuli pour estimer l’espace qui les sépare. Dans l’optique de comprendre comment cette règle perceptive est implémentée dans le système nerveux, nous avons étudié la représentation corticale des stimulations qui induisent ces illusions. Nous avons recherché les distorsions spatiales de la représentation somatotopique dans le cortex somesthésique primaire, à la suite de l’application séquentielle ou simultanée d’une paire de stimuli cutanés sur l’extrémité des phalanges distales de la patte antérieure chez le rat anesthésié. Avec des enregistrements électrophysiologiques et d’imagerie optique extrinsèque, nous avons mis en évidence un phénomène de fusion corticale des entrées sensorielles simultanées, avec un patron spatial d’activation unimodal, centré entre les représentations individuelles des doigts adjacents costimulés. Dans le cas de stimuli successifs, nous avons observé des modifications des réponses au deuxième stimulus dépendantes de l’intervalle inter stimuli. Cette intégration spatiotemporelle ne semble pas contribuer directement au raccourcissement des distances perçues, mais pourrait favoriser les erreurs de localisation constatées lors de la perception des illusions. / Several tactile spatiotemporal illusions suggest that the timing of successive cutaneous stimulations modify the perception of their spatial location. If they are close enough in time and space, shorter inter-stimuli time intervals (ISI) lead to shorted perceived distances. To the extreme of this time-space relation, when the stimuli are simultaneous, subjects report the merged perception of a unique and centered point of stimulation. Therefore, the tactile perceptual system seems to use the time separating two stimuli to compute their spatial distance. To understand the implementation of this perceptual rule, one can investigate the neural representation of the stimuli that elicit the illusory percept, looking for spatial distortions and their underlying mechanisms. Studies based on the measure of the hemodynamic responses have shown such distortions of the somatotopic representations in the primary somatosensory cortex, for simultaneous and delayed stimulations. In order to enhance our understanding of the elementary phenomenon that underpins those spatial modifications of the sensory inputs, we investigated the cortical representation of pairs of simultaneous and delayed cutaneous stimuli in the S1 of anesthetized rats. Using electrophysiological recordings and extrinsic optical imaging, we revealed the cortical merging of inputs from simultaneous digits stimulation. When the stimuli were delayed, we observed ISI-dependent modulations of the responses to the second stimulus. This spatiotemporal integration, that didn’t seem to contribute directly to a distance contraction effect, could however favor the mislocalization observed in illusory perception.
93

Alternativní metody zobrazení pankreatických ostrůvků. / Alternative methods for visualization of pancreatic islets.

Gálisová, Andrea January 2018 (has links)
Transplantation of pancreatic islets (PIs) represents an alternative treatment for type 1 diabetes mellitus. Post-transplant monitoring of islets by a reliable imaging method may contribute to the improvement of the transplantation outcome. In this thesis, novel visualization approaches for PIs were tested using magnetic resonance (MR) and optical imaging on phantoms and experimental animals, including Chemical Exchange Saturation Transfer (CEST) MR, fluorine (19 F) MR, bioluminescence and fluorescence imaging. MR imaging based on frequency-selective method CEST was performed on islets labeled with Eu-/Yb-based chelates. Labeled islets possessed low MR signal in phantoms, what would have been unsatisfactory for in vivo applications. Moreover, viability and function of labeled islets was impaired reflecting limited applicability of these agents for islet labeling and visualization. Genetically modified bioluminescent islets showed suitable properties for longitudinal tracking of their post-transplant fate at an artificial transplant site - subcutaneously implanted polymeric scaffolds. Using multimodal imaging (MR and bioluminescence), the optimal timing for transplantation of islets into the scaffolds was assessed in diabetic rats. Islets transplanted into scaffolds using the optimized timing scheme...
94

Workflow and hardware for intraoperative hyperspectral data acquisition in neurosurgery

Mühle, Richard, Ernst, Hannes, Sobottka, Stephan B., Morgenstern, Ute 13 April 2021 (has links)
To prevent further brain tumour growth, malignant tissue should be removed as completely as possible in neurosurgical operations. Therefore, differentiation between tumour and brain tissue as well as detecting functional areas is very important. Hyperspectral imaging (HSI) can be used to get spatial information about brain tissue types and characteristics in a quasi-continuous reflection spectrum. In this paper, workflow and some aspects of an adapted hardware system for intraoperative hyperspectral data acquisition in neurosurgery are discussed. By comparing an intraoperative with a laboratory setup, the influences of the surgical microscope are made visible through the differences in illumination and a pixel- and wavelength-specific signal-to-noise ratio (SNR) calculation. Due to the significant differences in shape and wavelength-dependent intensity of light sources, it can be shown which kind of illumination is most suitable for the setups. Spectra between 550 and 1,000 nm are characterized of at least 40 dB SNR in laboratory and 25 dB in intraoperative setup in an area of the image relevant for evaluation. A first validation of the intraoperative hyperspectral imaging hardware setup shows that all system parts and intraoperatively recorded data can be evaluated. Exemplarily, a classification map was generated that allows visualization of measured properties of raw data. The results reveal that it is possible and beneficial to use HSI for wavelength-related intraoperative data acquisition in neurosurgery. There are still technical facts to optimize for raw data detection prior to adapting image processing algorithms to specify tissue quality and function.:Abstract Introduction Materials and methods (Clinical workflow and setup for hyperspectral imaging process, Characteristics of the lighting, Characteristics of the hyperspectral imaging camera, Spectral data acquisition and raw data pre-processing in neurosurgery, Spectral data evaluation) Results (Spectral characteristics of the lighting, SNR of the HSI camera, Data acquisition and raw data preprocessing during neurosurgical operation, Spectral data evaluation) Discussion Conclusions
95

Advancements in the Synthesis and Application of Near-Infrared Imaging Reagents: A Dissertation

Pauff, Steven M. 23 January 2015 (has links)
Fluorescence-based imaging techniques provide a simple, highly sensitive method of studying live cells and whole organisms in real time. Without question, fluorophores such as GFP, fluorescein, and rhodamines have contributed vastly to our understanding of both cell biology and biochemistry. However, most of the fluorescent molecules currently utilized suffer from one major drawback, the use of visible light. Due to cellular autofluorescence and the absorbance of incident light by cellular components, fluorescence imaging with visible wavelength fluorophores often results in high background noise and thus a low signal-to-noise ratio. Fortunately, this situation can be ameliorated by altering the wavelength of light used during imaging. Near-infrared (NIR) light (650-900 nm) is poorly absorbed by cells; therefore, fluorophores excited by this light provide a high signal-to-noise ratio and low background in cellular systems. While these properties make NIR fluorophores ideal for cellular imaging, most currently available NIR molecules cannot be used in live cells. The first half of this thesis addresses the synthetic difficulties associated with preparing NIR fluorophores that can be used within living systems. Small molecule NIR fluorophores are inherently hydrophobic which makes them unsuitable for use in the aqueous environment of the cell. Water-solubility is imparted to these dyes through highly polar sulfonates, which subsequently prevents the dyes from entering the cell. The novel work presented here details vii synthetic routes to aid in the development of sulfonated NIR fluorophores, which can be delivered into live cells through the inclusion of an esterase-labile sulfonate protecting group. Application of these synthetic techniques should allow for the development of novel NIR fluorophores with intracellular applications. The second half of this thesis addresses the need for novel NIR imaging reagents. Although several classes of NIR scaffolds do exist, most NIR probes are derivatives of a single class, heptamethine indocyanines. The work described here increases this palette by displaying the ability of NIR oxazines to function as an imaging reagent in live cells and in vivo and as a molecular sensor of biologically-relevant environmental conditions. Combined, the work contained herein has the capacity to not only advance the current NIR toolkit, but to expand it so that fluorescence imaging can move out of the dark and into the NIR light.
96

Single-Pixel Camera Based Spatial Frequency Domain Imaging for Non-Contact Tissue Characterization

Petrack, Alec M. 06 August 2020 (has links)
No description available.
97

Topographic Mapping of the Primary Sensory Cortex Using Intraoperative Optical Imaging and Tactile Irritation

Polanski, Witold H., Oelschlägel, Martin, Juratli, Tareq A., Wahl, Hannes, Krukowski, Pawel M., Morgenstern, Ute, Koch, Edmund, Steiner, Gerald, Schackert, Gabriele, Sobottka, Stephan B. 19 March 2024 (has links)
The determination of exact tumor boundaries within eloquent brain regions is essential to maximize the extent of resection. Recent studies showed that intraoperative optical imaging (IOI) combined with median nerve stimulation is a helpful tool for visualization of the primary sensory cortex (PSC). In this technical note, we describe a novel approach of using IOI with painless tactile irritation to demonstrate the feasibility of topographic mapping of different body regions within the PSC. In addition, we compared the IOI results with preoperative functional MRI (fMRI) findings. In five patients with tumors located near the PSC who received tumor removal, IOI with tactile irritation of different body parts and fMRI was applied. We showed that tactile irritation of the hand in local and general anesthesia leads to reliable changes of cerebral blood volume during IOI. Hereby, we observed comparable IOI activation maps regarding the median nerve stimulation, fMRI and tactile irritation of the hand. The tactile irritation of different body areas revealed a plausible topographic distribution along the PSC. With this approach, IOI is also suitable for awake surgeries, since the tactile irritation is painless compared with median nerve stimulation and is congruent to fMRI findings. Further studies are ongoing to standardize this method to enable a broad application within the neurosurgical community.
98

A Novel Technique to Improve Anastomotic Perfusion Prior to Esophageal Surgery: Hybrid Ischemic Preconditioning of the Stomach. Preclinical Efficacy Proof in a Porcine Survival Model

Barberio, Manuel, Felli, Eric, Pop, Raoul, Pizzicannella, Margherita, Geny, Bernard, Lindner, Veronique, Baiocchini, Andrea, Jansen-Winkeln, Boris, Moulla, Yusef, Agnus, Vincent, Marescaux, Jacques, Gockel, Ines, Diana, Michele 13 April 2023 (has links)
Esophagectomy often presents anastomotic leaks (AL), due to tenuous perfusion of gastric conduit fundus (GCF). Hybrid (endovascular/surgical) ischemic gastric preconditioning (IGP), might improve GCF perfusion. Sixteen pigs undergoing IGP were randomized: (1) Max-IGP (n = 6): embolization of left gastric artery (LGA), right gastric artery (RGA), left gastroepiploic artery (LGEA), and laparoscopic division (LapD) of short gastric arteries (SGA); (2) Min-IGP (n = 5): LGA-embolization, SGA-LapD; (3) Sham (n = 5): angiography, laparoscopy. At day 21 gastric tubulation occurred and GCF perfusion was assessed as: (A) Serosal-tissue-oxygenation (StO2) by hyperspectral-imaging; (B) Serosal time-to-peak (TTP) by fluorescence-imaging; (C) Mucosal functional-capillary-density-area (FCD-A) index by confocal-laser-endomicroscopy. Local capillary lactates (LCL) were sampled. Neovascularization was assessed (histology/immunohistochemistry). Sham presented lower StO2 and FCD-A index (41 ± 10.6%; 0.03 ± 0.03 respectively) than min-IGP (66.2 ± 10.2%, p-value = 0.004; 0.22 ± 0.02, p-value < 0.0001 respectively) and max-IGP (63.8 ± 9.4%, p-value = 0.006; 0.2 ± 0.02, p-value < 0.0001 respectively). Sham had higher LCL (9.6 ± 4.8 mL/mol) than min-IGP (4 ± 3.1, p-value = 0.04) and max-IGP (3.4 ± 1.5, p-value = 0.02). For StO2, FCD-A, LCL, max- and min-IGP did not differ. Sham had higher TTP (24.4 ± 4.9 s) than max-IGP (10 ± 1.5 s, p-value = 0.0008) and min-IGP (14 ± 1.7 s, non-significant). Max- and min-IGP did not differ. Neovascularization was confirmed in both IGP groups. Hybrid IGP improves GCF perfusion, potentially reducing post-esophagectomy AL.
99

Intraoperative Optische Bildgebung in der Hirntumorchirurgie zur personalisierten Visualisierung der kortikalen funktionellen Hirnareale für Gefühl, Sehen, Motorik und Sprache sowie zur Gewebedifferenzierung von Tumorgewebe gegenüber funktionell intaktem Hirngewebe

Oelschlägel, Martin 12 July 2023 (has links)
Etwa 7000 Menschen erkranken in Deutschland pro Jahr an einem bösartigen Hirntumor. Bei vielen dieser Patienten ist die mikrochirurgische Resektion des pathologischen Gewebes ein wesentlicher Baustein der Therapie. Doch trotz vielfältiger technischer Unterstützungssysteme ist die Hirntumorchirurgie eine der anspruchsvollsten chirurgischen Disziplinen. Dieser Umstand ist u. a. der Tatsache geschuldet, dass entstandene Schäden am Hirngewebe meist irreversibel sind und somit postoperativ zu funktionellen Beeinträchtigungen bei den Patienten führen können. Erschwerend kommt weiterhin hinzu, dass pathologisch verändertes und funktionell intaktes Hirngewebe vor allem bei niedergradigen Gliomen visuell kaum voneinander unterscheidbar sind. Für das postoperative Outcome der Patienten ist sowohl das Ausmaß der Resektion, als auch die Vermeidung von funktionellen Defiziten von essenzieller Bedeutung. Zahlreiche Studien belegen eine deutlich verlängerte Überlebenszeit bei vollständiger Entfernung des Tumorvolumens und gleichzeitiger Vermeidung von durch den Eingriff verursachten neuen funktionellen Defiziten. Primäres Ziel ist daher die möglichst vollständige Entfernung des Tumors bei Erhalt der Hirnfunktion. Zur Unterstützung während dieses Entscheidungsprozesses besteht der Bedarf für vor allem intraoperativ anwendbare Verfahren und Methoden, die mit geringem Aufwand einsetzbar sind und Informationen über Morphologie und/oder Funktion bereitstellen können. Die optische Bildgebung (IOI / Intraoperative Optical Imaging) stellt eine Möglichkeit dar während der Intervention spezifische Hirnfunktionen zu visualisieren. Ursprünglich primär zu Forschungszwecken im Tiermodell eingesetzt, konnte in der Vergangenheit das Potenzial der Methode bei dem Einsatz im klinischen Umfeld gezeigt werden. Ausgehend von diesen Ergebnissen sollten in dieser Arbeit nun zum einen die Methode zur Darstellung der funktionellen Hirnareale weiter optimiert, die Integration in das klinische Umfeld vorangetrieben sowie das Potenzial der Bildgebung in weiteren Anwendungsfeldern evaluiert werden. Zentrale Fragestellungen die untersucht wurden, waren die Evaluation des Nutzens der IOI bei Wachkraniotomien zur Identifikation von Motor- und Spracharealen sowie zum anderen die Optimierung der bisherigen Auswerte- und Visualisierungsmethodik in Hinblick auf eine Maximierung des Informationsgewinns durch die genauere Charakterisierung der hämodynamischen Antwortfunktion. Weiterhin wurde untersucht inwieweit die in klinischer Routine vorhandene Mikroskopkameratechnik zur Anwendung der IOI geeignet ist. Neben diesen Fragestellungen ist auch die Abgrenzung von Tumorgewebe Gegenstand dieser Arbeit. Ausgehend von der Tatsache, dass sich pathologische Veränderungen u. a. auch in einer gestörten neurovaskulären Kopplung manifestieren, wurde untersucht, ob die direkte elektrische Stimulation (DCS) der Hirnoberfläche in Kombination mit der IOI geeignet ist, diese zu testen und somit funktionell intaktes und pathologisch verändertes Gewebe während der Operation zu differenzieren. Die Bewertung der IOI bei Wachoperationen erfolgte an einem Kollektiv aus insgesamt 10 Patienten. Hierbei wurden die mittels IOI aktivierten Areale qualitativ mit den präoperativ aufgezeichneten fMRT-Daten, sowie den intraoperativen Ergebnissen der Sprachtestung durch die direkte elektrische Stimulation verglichen. Zur funktionellen Aktivierung der Sprachareale wurden von den Patienten während der Aufnahmen Objektbenennungsaufgaben durchgeführt. Weiterhin fanden Untersuchungen zum Einsatz der IOI zur Generierung von visuellem Feedback während der Sprachkartierung statt. Zur Beantwortung der Eignung der RGB-Kamera für die IOI, wurden Messungen an insgesamt acht Patienten durchgeführt, bei denen der primär sensorische Kortex durch Stimulation des N. medianus aktiviert wurde. Die Aufnahmen der RGB-Kamera erfolgten hierbei parallel zu dem bisher genutzten Standardsystem, welches durch Lichtwellenlängenfilterung bei einem isosbestischen Punkt der Hämoglobinabsorption (568 nm) sensitiv für Änderungen des zerebralen Blutvolumens ist. Die aus den einzelnen Farbkanälen berechneten Aktivitätskarten der RGB-Kamera wurden mit der Aktivitätskarte des Standardsystems verglichen, um eine Aussage über die dominierende physiologische Signalkomponente in den einzelnen Farbkanälen zu treffen. Die bisherigen Auswertealgorithmen für die Darstellung funktioneller Areale basieren auf einem Ansatz, welcher die Fouriertransformation nutzt, um die Amplitude der Stimulationsfrequenz in den Bilddaten zu identifizieren. Dieser Ansatz wurde derart optimiert, dass zusätzlich zur Amplitudeninformation nun auch die Phaseninformation des Signals berücksichtigt wird. Somit können die hämodynamischen Vorgänge bei Aktivierung der entsprechenden Hirnareale genauer charakterisiert werden. Diese neue Auswertung und Visualisierung wurde zur Untersuchung der Aufnahmen von insgesamt 22 Patienten genutzt. Hierbei wurden die Aktivierungen nach elektrischer, taktiler und visueller Stimulation sowie die Aktivierung nach Durchführung von Sprachaufgaben bei Wachkraniotomien untersucht. Die Ergebnisse wurden u. a. mittels Phasenwinkelverteilungen in Form von Polarhistogrammen quantifiziert. In Hinblick auf die Differenzierung zwischen Tumor- und Normalgewebe wurden die Änderungen des zerebralen Blutvolumens, nachfolgend auf insgesamt 19 elektrische Stimulationen der Hirnoberfläche bei drei Patienten, mittels IOI beobachtet und die in den aktivierten Arealen gemessenen Reflektanzänderungen anschließend hinsichtlich Amplitude und Dauer quantifiziert. Das Ausmaß der aktivierten Areale wurde dazu mittels Differenzbildberechnung aus der gemittelten Reflektanz der Hirnoberfläche vor Stimulationsbeginn und der Reflektanz direkt nach Stimulationsende bestimmt. Bei dem Einsatz der IOI während Wachoperationen war die Identifizierung von primär motorischen Arealen in guter Übereinstimmung zu den präoperativen fMRT-Daten möglich. Die Auswertung der Daten zur Lokalisierung der Sprachareale ergab, dass bei 5 von 8 Patienten grundsätzlich zwar eine Übereinstimmung zum fMRT sichtbar war, gerade aber in Bezug zu den Ergebnissen der intraoperativen Sprachkartierung mit DCS die Ergebnisse beider Modalitäten (fMRT und IOI) nicht spezifisch genug für eine intraoperative Entscheidungsfindung sind. Die Verwendung einer RGB-Kamera für die Bildgebung ist prinzipiell möglich und kann die Integration der Methode in die operativen Abläufe vereinfachen. Bei allen 8 Patienten ließen sich aus den Daten der Farbkamera Aktivitätskarten berechnen, die eine Abgrenzung des Handareals auf dem primär sensorischen Kortex erlaubten. Bezüglich der Lokalisation der Aktivierung zeigten Blau- als auch Grünkanal die höchste Übereinstimmung mit den Daten des Standardsystems bei 568 nm. Eindeutige Unterschiede in den durch verschiedene Stimulationen ausgelösten hämodynamischen Reaktionen konnten mittels der in dieser Arbeit eingesetzten Phasenauswertung beobachtet werden. Speziell die auf die elektrische Stimulation am N. medianus folgende hämodynamische Antwort grenzt sich bezüglich ihrer temporalen Charakteristik gegenüber den Antworten nach taktiler und visueller Stimulation ab. Während der Stimulationsphasen kam es hierbei zu einer Reduktion des zerebralen Blutvolumens. Sowohl bei der taktilen, als auch bei der visuellen Stimulation zeigte sich eine Zunahme des Blutvolumens während der Stimulation. Die Auswertung der aktiven Sprachproduktion ergab sowohl Areale mit zunehmendem, als auch Areale mit abnehmendem Blutvolumen. Im Rahmen der Untersuchungen zur Gewebeabgrenzung mittels IOI und DCS konnten signifikante Unterschiede zwischen Tumor und morphologisch unverändertem, also mutmaßlich funktionell intaktem Hirngewebe beobachtet werden. Nach der elektrischen Stimulation zeigten sich auf Tumorgewebe in ihrer Amplitude deutlich geminderte optische Änderungen wohingegen auf mutmaßlich funktionell intaktem Hirngewebe eine deutliche hämodynamische Reaktion auf den Stimulus zu beobachten war. Die Ergebnisse verdeutlichen, dass die IOI als universelles Werkzeug bei einer Vielzahl von Anwendungsgebieten in der Neurochirurgie eingesetzt werden kann. Der methodeninhärente Vorteil liegt in der einfachen Anwendbarkeit und unkomplizierten Integration in die operativen Abläufe. Basierend auf den Ergebnissen der Arbeit scheint neben der Identifikation funktioneller Areale vor allem die Kombination von IOI und DCS vielversprechend. Hier kann die IOI zum einen zur Generierung von visuellem Feedback im Rahmen der intraoperativen Sprachkartierung genutzt werden und zum anderen bei Eingriffen unter Vollnarkose zur Gewebedifferenzierung. Die in der Arbeit weiterentwickelte funktionelle Auswertung erlaubt die genauere Charakterisierung der hämodynamischen Antwortfunktion auf verschiedene Stimuli und somit die Nutzung der Methode zum Erlangen vom grundlegendem Wissen über die Funktionsweise von kortikalen Prozessen. / Approximately 7000 people in Germany are diagnosed with a malignant brain tumor each year. For many of these patients, microsurgical resection of the pathological tissue is an essential component of the therapy. However, despite a variety of technical support systems, brain tumor surgery is one of the most challenging surgical disciplines. This is primary due to the fact, that damage to the brain tissue is usually irreversible, and can therefore lead to postoperative functional impairment. Another complicating factor is that pathologically altered and functionally intact brain tissue are visually almost indistinguishable from each other, especially in low-grade gliomas. For the postoperative outcome of patients, both, the extent of resection, and the avoidance of functional deficits, are of essential importance. Several studies demonstrate a significantly prolonged survival time with complete removal of the tumor volume while simultaneously avoiding new functional deficits caused by the surgery. Therefore, the primary goal is to remove the tumor as completely as possible while preserving brain function. To assist during this decision-making process, there is a need for intraoperative procedures and methods that can be used with minimal effort to provide information about morphology and function of cortical structures. Intraoperative Optical Imaging (IOI) is a technique that allows the visualization of specific brain function during the surgical intervention. Initially used mainly in animal models, developments in the past revealed the potential of IOI in a clinical setting. Based on those results, the scopes of this work are the further development of the method for visualization of functional brain areas, advancements in integration of IOI into surgical environment, and the development of new fields of application in neurosurgical interventions. In detail, this work investigates the use of IOI in awake surgery for identification of motor and speech areas. Another question addressed is the in depth characterization of the hemodynamic response, following functional stimulation. Therefore, new methods for data evaluation and visualization are developed. The integration of IOI into the clinical workflow and routine is essential for a successful application. Here, the potential use of the microscope integrated camera hardware is investigated to answer the question, whether it can be used for imaging. Besides the identification of functional areas, tissue differentiation is of major importance during tumor resection. Therefore, this work evaluates whether direct electrical stimulation (DCS) is suited, to delineate different tissue types (functional intact and tumor tissue), by evaluating the hemodynamic response following to the stimulation, using the IOI technique. This follows the hypothesis, that tumor tissue is in most cases characterized by an impaired neurovascular coupling and therefore by a limited response to electrical stimulation. IOI during awake surgery was evaluated by performing measurements on a total of 10 patients. Localization of IOI activation was compared towards preoperative acquired fMRI data, as well as towards intraoperative DCS language mapping. Object naming tasks were performed by the patients, to activate the corresponding language areas. Additionally, the use of IOI as a feedback tool during DCS mapping was investigated. Here, IOI was used to visualize the spatial extent of each single stimulation. The suitability of microscope integrated RGB camera for IOI was investigated by performing measurements on 8 patients, that underwent surgery near the central region. Activation of hand area on primary sensory cortex was triggered by electrical stimulation of the median nerve while patients were under general anesthesia. Measurements with an RGB camera were performed parallel to the standard research hardware setup, which uses a light wavelength filter (568 nm) that makes the system sensitive to changes in cerebral blood volume. Activity maps, calculated from the data of each RGB camera color channel, were compared, to the activity maps calculated from light wavelength filtered image data. The current algorithms for IOI data evaluation use a Fourier-based approach to localize the activated brain region based on the amplitude of the stimulation frequency component. This approach was refined in this work to incorporate besides the amplitude also the phase of the stimulation frequency component. This allows a more precise characterization of the hemodynamic processes during activation. The refined approach was used to evaluate 22 patient measurements. Datasets from electrical, tactile, visual, and speech activation were investigated. Results were quantitatively assessed using, among other things, the phase angle distribution visualized as polarhistograms. Regarding the differentiation between functional impaired tumor and functional intact non-tumor brain tissue, changes in cerebral blood volume from 19 direct electrical stimulations of three different patients were recorded and evaluated with IOI. The extent of the activated regions as well as the amplitude and duration of reflectance / hemodynamic changes were quantized. Therefore, a difference imaging technique was implemented. During awake surgery, the identification of primary motor areas with IOI was possible in good agreement with preoperatively acquired fMRI data. The evaluation of speech activation revealed that, although in 5 out of 8 cases a partial agreement between IOI and fMRI was visible, the results of both modalities (IOI as well as fMRI) are too unspecific to be useful for surgical decision-making. Here, DCS will remain the method of choice. The use of an RGB camera for IOI is generally possible and allows an easy integration of the method into the surgical workflow. Evaluation of data from all 8 patients, showed that color camera data is suitable to calculate activity maps that allow the identification of the median nerve area on primary sensory cortex. Regarding the localization of activation, activity maps calculated from green and blue channel data showed the highest agreements towards the CBV maps acquired at 568 nm. Using the refined evaluation protocol that considers the phase information of the optical signal, significant differences were found in the hemodynamic responses following the different stimulation types. Especially the evaluation of the hemodynamic response after electrical median nerve stimulation revealed distinct characteristics. Here, a decrease in CBV during stimulation trials was visible, whereas the hemodynamic responses after tactile as well as visual stimulation were characterized by an increase of CBV during stimulation trials. The evaluation of speech activations, revealed locally adjacent areas with CBV increase as well as with CBV decrease. Evaluation of optical changes of the brain surface after DCS revealed significant differences, dependent of the underlying type of tissue. The stimulation of functional impaired tumor tissue triggered a hemodynamic response that was, compared towards the stimulation of presumably functional intact cortical tissue, reduced in amplitude as well as in its spatial extent. The results of this work illustrate the potential of IOI in a wide variety of applications during neurosurgical intervention. The inherent advantage of the method is its ease in use and the easy integration into clinical workflow and environment. Based on the results of this work, the combination of IOI and DCS seems, besides the identification of functional areas, especially promising. IOI can be used here to either generate visual feedback for DCS during speech mapping in awake surgery, or it can be used to differentiate between tissue types by assessment of neurovascular coupling, even under general anesthesia of the patients. The algorithms for functional data evaluation developed in this work, allow a more precise characterization of the hemodynamic response. Therefore, IOI enables the user to gain fundamental knowledge about cortical hemodynamics and processes. Future work should address each of these presented use cases to address the open questions arising from this initial work on the extended fields of application for IOI.
100

Multifunctional Magnetic Nanoparticles for Cancer Imaging and Therapy

Foy, Susan Patricia 30 January 2012 (has links)
No description available.

Page generated in 0.2948 seconds