• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 316
  • 71
  • 12
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 410
  • 281
  • 179
  • 166
  • 164
  • 164
  • 107
  • 76
  • 51
  • 45
  • 43
  • 41
  • 41
  • 41
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Micro and Nano Raman Investigation of Two-Dimensional Semiconductors towards Device Application

Rahaman, Mahfujur 02 July 2020 (has links)
Recent advances in nanoscale characterization and device fabrications have opened up opportunities for layered semiconductors in nanoelectronics and optoelectronics. Due to strong confinement in monolayer thickness, physical properties of this materials are greatly influenced by parameters such as strain, defects, and doping at the nanoscale. Therefore, understanding the effect of this parameters on layered semiconductors is the prerequisite for any device application. In this doctoral thesis, impact of such parameters on the optical properties of layered semiconductors are studied in nanoscale. MoS2, the most famous transition metal dechalcogenide (TMDC) (n-type semiconductor), and p-type GaSe, a member of metal monochalcogenide (MMC) are investigated in this work. Finally, in outlook, a device made of p-type few layer GaSe and n-type 1L-MoS2 is discussed.
302

Direct Patterning of Optical Coupling Devices in Polymer Waveguides

Finn, Andreas 25 April 2014 (has links)
The aim of the present work was to design and fabricate all purpose, positioning-tolerant and efficient interconnects between single-mode fibers and integrated waveguides out of polymers. The developed structures are part of the optical packaging of integrated optical chips. Integrated optics have gathered tremendous interest throughout recent years from research as well as from the industry, and most likely the demand will further grow in the future. Today’s trend is to establish optical data communication not only in far-distance transmission but also in end-user or so called fiber-to-home configurations, or, in the near future, also on board or even chip level. In addition, integrated optical sensors are gaining more and more importance. In the future, lab-on-a-chip systems may be able to simplify and accelerate analysis methods within health care or allow for a continuous monitoring of almost any environmental variable. All these applications call for robust optical packaging solutions. Many integrated optical chips are using a silicon-on-insulator design. Technologies which were originally intended for the manufacturing of integrated circuits can be utilized for the fabrication of such silicon-on-insulator chips. Point-of-care testing, which is a considerable part of bio-sensing, in some cases only allows the use of disposable transducer elements. The fabrication of these transducers, also including almost all other system parts, may be possible using polymers. Alternative fabrication methods like nanoimprint lithography can be applied for the patterning of polymers. With these, the extension of already known working principles or even entirely new device architectures become feasible for mass production. The direct patterning of polymers by means of nanoimprint was used to fabricate interconnects for integrated waveguides. In contrast to conventional lithography approaches, where a patterned resist layer is used as a masking layer for subsequent process steps, direct patterning allows the immediate use of the structures as functional elements. Firstly, nanoimprint allows diffraction-unlimited patterning with nanometer resolutions as well as the replication of complex three-dimensional patterns. These unique properties were used within this work to pattern shallow gratings atop an integrated waveguide within only one single manufacturing step. The gratings are used as coupling elements and can be utilized either to couple light from external elements to the chip or vice versa. Considerations regarding the optical effects on single-mode polymer waveguides as well as grating couplers were obtained from simulation. They are specific to the chosen design and the used polymer and cannot be found elsewhere so far. Compared to similar designs and fabrication strategies proposed in literature, the ones followed here allow for a higher efficiency. The dimensions and process windows obtained from simulation did serve as a basis for the subsequent fabrication of the grating couplers. All steps which are necessary to turn the calculated design into reality, ranging from master fabrication, to working mold cast and imprint, are shown in detail. The use of a working mold strategy is of crucial importance for the fabrication process and is discussed in detail. The use of a working mold preserves a costly master and further allows for a cost-efficient production. Parameters which are relevant for the production as well as for the final polymer patterns were analyzed and discussed. On the basis of the obtained data, a process optimization was performed. The optical characterization was also part of the presented work. A comparison with the results obtained from simulation is included and additional effects were revealed. Most of them may be subject to further improvement in future designs. In summary, the present work contributes to the field of optical packaging. It shows a viable route for the design and fabrication of interconnects of single-mode polymer waveguides. The presented design can be used as a building block which can be placed at almost any positions within an integrated optical chip. The fabrication method includes a minimum number of process steps and is still able to increase performance compared to similar approaches. Moreover, all process steps allow for scaling and are potential candidates for mass production.
303

Undisturbed interferometric sensing through a fluid interface by electrically-tunable lenses and micro mirrors

Czarske, Jürgen, Leithold, C., Radner, Hannes, Büttner, Lars, Stürmer, Moritz, Wallrabe, U. 14 August 2019 (has links)
We have harnessed the power of various programmable photonics devices for an interferometric measurement technique. Distortion-free laser-based velocity measurements through a dynamic gas-liquid interface are enabled by a closed-loop optoelectronic system. We are employing electrically tunable lenses and micro mirrors to correct low-order wavefront distortions effectively. Our work represents a paradigm shift in interferometric velocity measurement techniques from using static to dynamic optical elements.
304

Photochemical Tuning of Surface Plasmon Resonances in Metal Nanoparticles

Härtling, Thomas 28 April 2009 (has links)
Illuminated metal nanoparticles (MNPs) feature collective electron oscillations (so-called localized surface plasmons or LSPs) which facilitate concentrating light-matter interactions to length scales below the diffraction limit. Part I of this book describes two applications of this confinement effect. Firstly, the use of single particles as optically active probes for scanning near-field optical microscopy is demonstrated. Secondly, fluorescence enhancement in the vicinity of a single MNP is described theoretically. This description focuses on how the particle diameter and the surrounding medium influence the enhancement. It turned out that in these two examples the optical signal levels can be improved by manipulating the spectral LSP resonance position of the particles. This finding triggered the search for a method allowing optical particle tuning. Part II of this thesis describes an approach which allows such a spectral LSP manipulation on the single-particle level. The method makes use of the optically induced reduction of metal salt complexes in solution, which leads to the deposition of thin layers of elemental metal onto single, intentionally addressed particles. The deposition process is monitored by optical LSP analysis, and thus the tuning of the optical particle properties is controlled in situ. With this technique, a manipulation of both the size and the shape of single nanoparticles was achieved. Initial experiences were gained by manipulating spherical and ellipsoidal gold particles, for which a red- and a blueshift of the LSP resonance was observed, respectively. The insights obtained from these experiments were then applied to tune the interparticle separation in nanoparticle pairs, i.e., to tune the resonance wavelength of these plasmonic nanoresonators. Subsequently, single resonators were used to reshape the fluorescence emission spectrum of organic molecules. Besides size and shape, also material parameters such as the surface roughness and the surface material composition influence the optical properties of MNPs. Both aspects are addressed using the example of rough platinum spheres and demonstrating the fabrication of bimetallic core-shell particles. As the material compositon of particles not only influences their optical, but for example also their catalytic or magnetic properties, photochemical metal deposition with in-situ optical LSP read-out builds a bridge to other fields of nanoscience. The presented method is a versatile tool for the fabrication and manipulation of nanostructures, and it is not limited to the field of plasmonics. / Metallische Nanopartikel (MNP) weisen unter Beleuchtung kollektive Schwingungen des Elektronengases auf (sogenannte lokalisierte Oberflächenplasmonen oder LOP). Die dadurch entstehende elektromagnetische Feldverteilung um die Partikel erlaubt die Konzentration von Licht-Materie-Wechselwirkungen auf einen Größenbereich unterhalb des Beugungslimits. In Teil I des vorliegenden Buches werden zwei Anwendungen dieses Konzentrationseffekts beschrieben. Zum einen wird die Verwendung eines einzelnen Partikels als Rastersonde für die optische Nahfeldmikroskopie gezeigt. Zum anderen wird die Fluoreszenzverstärkung in der unmittelbaren Umgebung eines Partikels untersucht. In letzterem Fall liegt der Fokus auf dem Einfluss der Partikelgröße und des Umgebungsmediums auf den Verstärkungsfaktor. Beide Untersuchungen zeigten, dass die Stärke der auftretenden optischen Signale von einer gezielten Steuerung der LOPResonanz profitieren kann. Diese Erkenntnis führte zur Entwicklung einer Methode, welche eine solche spektrale LOP-Steuerung erlaubt. Mit der in Teil II beschriebenen photochemischen Abscheidung von Metall auf einzelne Partikel wurde ein geeigneter Ansatz gefunden. Dabei wird die optisch induzierte Reduktion von Metallsalzkomplexen in einer Lösung ausgenutzt, um dünne Metallschichten auf gezielt ausgewählte Partikel aufzubringen. Der Abscheidungsprozess wird optisch über die Änderung der LOP-Resonanz des belichteten Partikels überwacht. Somit können dessen optische Eigenschaften gezielt in situ eingestellt werden. Mit der beschriebenen Technik können die Größe und die Form einzelner metallischer Partikel beeinflusst werden, was sich in einer Rot- bzw. Blauverschiebung der LOPResonanz äußert. Dieses Prinzip konnte zuerst an sphärischen und ellipsoidalen Goldpartikeln gezeigt werden. Die gewonnen Erkenntnisse wurden dann auf die gezielte Einstellung des Teilchenabstandes in Partikelpaaren übertragen, d. h., die Resonanzwellenlänge solcher plasmonischer Nanoresonatoren wurde gezielt manipuliert. Die Resonatoren konnten in einem zweiten Schritt zur Steuerung des Fluoreszenzspektrums organischer Moleküle eingesetzt werden. Neben Größe und Form spielen auch Materialparameter wie die Oberflächenrauigkeit und das Oberflächenmaterial eine wichtige Rolle für die optischen Eigenschaften der Partikel. Diese Parameter wurden am Beispiel von rauen Platinpartikeln sowie an bimetallischen Kern-Schale-Partikeln untersucht. Da das Oberflächenmaterial nicht nur die optischen, sondern z. B. auch katalytischen und magnetischen Eigenschaften der Partikel beeinflusst, verbindet die vorgestellte Methode die Plasmonik mit vielen anderen Bereichen der Nanotechnologie. Sie stellt eine vielseitige Technik zur Herstellung und Manipulation von Nanostrukturen dar, ohne dabei auf die Nanooptik limitiert zu sein.
305

Ultrashort Light Sources from High Intensity Laser-Matter Interaction

Köhler, Christian 21 May 2012 (has links)
The thesis deals with the development and characterization of new light sources, which are mandatory for applications in atomic and molecular spectroscopy, medical and biological imaging or industrial production. For that purpose, the employment of interactions of high intensity ultra-short laser pulses with gaseous media offers a rich variety of physical effects which can be exploited. The effects are characterized by a nonlinear dependency on the present light fields. Therefore, accurate modeling of the nonlinearities of the gas is crucial. In general, the nonlinearities are due to the electronic response of the gas atoms to the light field and one distinguishes between the response of bound and ionized electrons. The first part investigates laser pulse self compression, where the consideration of a purely bound electron response is sufficient. We apply an exotic setup with an negative Kerr nonlinearity in order to avoid spatial collapse of the beam on the cost of dealing with an highly dispersive nonlinearity. Analytical analysis and numerical simulations prove the possibility of laser pulse compression in such setups and reveals a new compression scheme, where the usually disturbing dispersion of the nonlinaerity is responsible for compression. Dealing with tera-Hertz generation by focusing an ionizing two-color laser pulse into gas, the second part exploits a medium nonlinearity caused by ionized electrons. We reveal in a mixed analytical and numerical analysis the underlying physical mechanism for THz generation: ionized electrons build up a current, which radiates. Thereby, the the two-color nature of the input laser is crucial for the emitted radiation to be in the tera-Hertz range. Combining this physical model with a pulse propagation equation allows us to achieve remarkable agreement with experimental measurements. Finally, the third part deals with nonlinearities from bound as well from ionized electrons on a fundamental level. We advance beyond phenomenological models for responses of bound and ionized electrons and quantum mechanically model the interaction of an ultra-short laser pulse with a gas. Already the simplest case of one dimensional hydrogen reveals basic features. For low intensities, the Kerr nonlinearity excellently describes the response of bound electrons. For increasing intensity, ionization becomes important and the response from ionized electrons is the governing one for high intensities. This quantum mechanical correct modeling allows us to explain saturation and change of sing of the nonlinear refractive index and to deduce suited approximate models for optical nonlinearities.
306

Study of luminescent and energy properties of CsPbBr3 and CsPbI3 nanoplatelets

Salique, Taddeo January 2022 (has links)
Halide perovskite semiconductor nanocrystals have been studied a lot recently because they allow a precise control over the entire visible emission spectrum and as a result, the possibility of a variety of light-emitting applications. In this study, cesium lead bromide CsPbBr3 and cesium lead iodide CsPbI3 nanoplatelets of 3, 4 and 5 monolayers (ML) have been synthesized. The absorbance and emission of each solutions and monolayer are measured and analyzed in terms of the change in excitonic nature. The results show that the exciton peak decreases with the number of monolayers with a stronger excitonic behavior in the Bromide system in comparison to the Iodine perovskite with nearly no excitonic feature for the 5 ML system. An analysis of the apparent Stokes-shift show that it increases with the number of monolayer for CsPbBr3 in comparison with the Iodide system where it decreases. The vibrational properties were quantified with Raman spectroscopy and showed that a second signifying peak of the perovskite vibration change upon quantum confinement.
307

A Platform for a Wheeler's Delayed-Choice Experiment in Optical Fiber / En fiberoptisk plattform till Wheeler's experiment med sent val

Åhlgren, Gustaf January 2022 (has links)
Quantum mechanics has played a big role in the development of our understanding of the smallest things in the universe. It has provided descriptions for phenomena like single electrons or single photons, which are single particles of light. One of the most mysterious properties of quantum systems is the ability to behave as a particle or a wave. In 1978, J. A. Wheeler devised an experiment to investigate if a quantum system knows in advance if it should propagate as a wave or as a particle through an experiment, by changing the experiment after the quantum system has entered the experimental set-up.  Here an optical all-in fiber platform for a Wheeler's delayed choice experiment is modeled, constructed and tested using commercially available fiber optic components. This is in contrast to previous delayed choice experiments, which have used free-space components in some parts of their experimental set-up. The optical set-up was modeled and simulated using a quantum formalism, with future work in mind if the platform is used to perform a quantum delayed-choice experiment. The platform used a Sagnac interferometer as the second beamsplitter in a Mach-Zehnder interferometer, to perform the choice of measuring either particle or wave properties. Using a fiber platform, the length of the platform can easily be extended with more fiber to accommodate a large separation between the beamsplitter in the beginning of the set-up, and the Sagnac interferometer at the end of the set-up. The result was a stable platform to measure particle behavior of light with good performance, and the ability to switch between these measurements on the fly. The system was tested with classical light, but the light source can be changed from a laser, to for example an attenuated laser, to enter the quantum domain for performing a quantum delayed-choice experiment using the platform. / Kvantmekaniken har inneburit stora genombrott i vår förståelse av de allra minsta tingen i universum. Kvantmekaniken har gett oss beskrivningar av fenomen som enstaka elektroners beteende eller enstaka ljuspartiklar, så kallade fotoner. En av de märkligaste egenskaperna som finns hos subatomära partiklar är förmågan att upptärda som en våg eller som en partikel, beroende på sammanhanget. År 1978 beskrev J. A. Wheeler ett experiment för att undersöka om en kvantmekanisk partikel, till exempel en foton, vet i förväg om den skall färdas som en partikel eller som en våg genom en experimentuppställning. Undersökningen av detta görs genom att ändra experimentuppställningen samtidigt som den kvantmekaniska partikeln färdas genom uppställningen.  En fiberoptisk plattform för Wheelers experiment med sent val modelleras, byggs med kommersiella fiberoptiska komponenter och testas i denna uppsats. Detta skiljer sig från tidigare experiment som har använt frirymds optik i någon del av experimentuppställningen. Den optiska kretsen modelleras med kvantmekanikens formalism, detta för att underlätta för framtida experiment som använder plattformen för att genomföra den kvantmekaniska varianten av Wheelers experiment med sent val.  Plattformen består av en Sagnac interferometer som ersätter den andra stråldelaren i en Mach-Zehnder interferometer, och därmed ger funktionen att kunna byta mellan mätning av partikelegenskaper och mätning av vågegenskaper. Den fiberoptiska plattformen är enkel att förlänga för att skapa ett långt avstånd mellan den första stråldelaren och Sagnac interferometern. Resultatet var en stabil plattform med god förmåga att mäta partikelegenskaper respektive vågegenskaper hos ljus och byta mellan dessa mätlägen under experimentets gång. Systemet testades med klassikt laserljus men denna ljuskälla kan enkelt bytas ut mot en dämpad laser för att komma ned på ljusnivåer med enstaka fotoner, och därmed kunna genomföra den kvantmekaniska varianten av Wheelers experiment med sent val.
308

Topological Photonic Lattices / Topologiska fotoniska gitter

Xu, Zesheng January 2022 (has links)
Topological Photonics is a rapidly growing field which explores the ideas of topological invariants adapted from condensed matter physics to optical systems. Thanks to integrated photonics platforms, the evolution of light in nanoscale photonic lattices can enable direct measurement of topological properties of the band-structure. In this degree project, we study the topological Anderson phase transition in disordered one-dimensional lattices, and probe distinct topological phases in photonic superlattices. In first part, we fabricate photonic lattices with different disorder strength, and observe the topological transition from trivial topological Anderson phase to non-trivial topological Anderson phase as the system disorder is increased. In second part, we focus on probing the Zak phase in photonic superlattices. We fabricate a superlattice system that utilizes either bulk excitation or edge excitation. We identify the trivial and non-trivial Zak phase using two methods: first, through reconstructing the intensity evolution in the edge waveguide, second, through calculating the beam displacement in the case of bulk excitation .  In order to study the evolution of the light in the nano-scaled photonic lattices, we develop a novel technique: Loss-Induced Scattering Approach (LISA), which enables high fidelity reconstruction of the photonic state evolving in the lattice. / Topologisk fotonik är ett snabbt växande område som utforskar idéerna om topologiska invarianter anpassade från kondenserad materiens fysik till optiska system. Tack vare integrerade fotonikplattformar kan ljusutvecklingen i fotoniska gitter i nanoskala möjliggöra direkt mätning av topologiska egenskaper hos bandstrukturen. I detta examensarbete studerar vi den topologiska Anderson-fasövergången i oordnade endimensionella gitter, och undersöker distinkta topologiska faser i fotoniska supergitter. I den första delen tillverkar vi fotoniska gitter med olika störningsstyrka och observerar den topologiska övergången från trivial topologisk Anderson-fas till icke-trivial topologisk Anderson-fas när systemstörningen ökar. I den andra delen fokuserar vi på att sondera Zak-fasen i fotoniska supergitter. Vi tillverkar ett supergittersystem som använder antingen bulkexcitering eller kantexcitering. Vi identifierar den triviala och icke-triviala Zak-fasen med två metoder: för det första genom att rekonstruera intensitetsutvecklingen i kantvågledaren, för det andra genom att beräkna strålens förskjutning vid bulkexcitation. För att studera utvecklingen av ljuset i de nanoskalade fotoniska gittren, utvecklar vi en ny teknik: Loss-Induced Scattering Approach (LISA), som möjliggör högtrohetsrekonstruktion av det fotoniska tillståndet som utvecklas i gittret.
309

Design of Optical Magnetic Systems for Terahertz Lensing / Design av magnetsystem för terahertz-optik

Lidberg, Gustav, Pontén, Karl, Millberg, Johan January 2021 (has links)
When graphene is subjected to magnetic fields, it can be used as an optical device with light in the terahertz region. The functionality of the graphene depends on which magnetic field profile is influencing it. In this project, magnet configurations producing uniform and quadratic magnetic field profiles were studied. A script was written that allowed the user to place dipoles and ring magnets in the proximity of a graphene disc. The script would then determine the necessary dimensions of the permanent magnets used to produce the target magnetic field. The resulting magnetic configurations have been shown to produce a magnetic field within ±1% of the target profile, on the specified domain. However, further studies are required to establish if the acquired configurations proves reasonable in practise, and if so, how well the corresponding optical devices will perform.
310

Structured illumination 3D microscopy using adaptive lenses and multimode fibers

Czarske, Jürgen, Philipp, Katrin, Koukourakis, Nektarios 13 August 2019 (has links)
Microscopic techniques with high spatial and temporal resolution are required for in vivo studying biological cells and tissues. Adaptive lenses exhibit strong potential for fast motion-free axial scanning. However, they also lead to a degradation of the achievable resolution because of aberrations. This hurdle can be overcome by digital optical technologies. We present a novel High-and-Low-frequency (HiLo) 3D-microscope using structured illumination and an adaptive lens. Uniform illumination is used to obtain optical sectioning for the high-frequency (Hi) components of the image, and nonuniform illumination is needed to obtain optical sectioning for the low-frequency (Lo) components of the image. Nonuniform illumination is provided by a multimode fiber. It ensures robustness against optical aberrations of the adaptive lens. The depth-of-field of our microscope can be adjusted a-posteriori by computational optics. It enables to create flexible scans, which compensate for irregular axial measurement positions. The adaptive HiLo 3D-microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 microns and sub-micron lateral resolution over the full scanning range. In result, volumetric measurements with high temporal and spatial resolution are provided. Demonstration measurements of zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are presented.

Page generated in 0.0233 seconds