• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 320
  • 71
  • 12
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 414
  • 285
  • 183
  • 170
  • 168
  • 168
  • 107
  • 76
  • 52
  • 45
  • 43
  • 41
  • 41
  • 41
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Dielektrische Wellenleitergitter in Resonanz / Theorie, Charakterisierung und Anwendung / All-dielectric Resonant Waveguide Gratings / Theory, Characterization and Application

Selle, André 19 November 2008 (has links)
No description available.
332

Polarization mode excitation in index-tailored optical fibers by acoustic long period gratings / Anregung von Polarisationsmoden in optischen Fasern mit angepasstem Brechzahlprofil durch langperiodische akustische Gitter

Zeh, Christoph 15 November 2013 (has links) (PDF)
The present work deals with the development and application of an acoustic long-period fiber grating (LPG) in conjunction with a special optical fiber (SF). The acoustic LPG converts selected optical modes of the SF. Some of these modes are characterized by complex, yet cylindrically symmetric polarization and intensity patterns. Therefore, they are the guided variant of so called cylindrical vector beams (CVBs). CVBs find applications in numerous fields of fundamental and applied optics. Here, an application to high-resolution light microscopy is demonstrated. The field distribution in the tight microscope focus is controlled by the LPG, which in turn creates the necessary polarization and intensity distribution for the microscope illumination. A gold nanoparticle of 30 nm diameter is used to probe the focal field with sub-wavelength resolution. The construction and test of the acoustic LPG are discussed in detail. A key component is the piezoelectric transducer that excites flexural acoustic waves in the SF, which are the origin of an optical mode conversion. A mode conversion efficiency of 85% was realized at 785 nm optical wavelength. The efficiency is, at present, mainly limited by the spectral positions and widths of the transducer’s acoustic resonances. The SF used with the LPG separates the propagation constants of the second-order polarization modes, so they can be individually excited and are less sensitive to distortions than in standard weakly-guiding fibers. The influence of geometrical parameters of the fiber core on the propagation constant separation and on the mode fields is studied numerically using the multiple multipole method. From the simulations, a simple mode coupling scheme is developed that provides a qualitative understanding of the experimental results achieved with the LPG. The refractive index profile of the fiber core was originally developed by Ramachandran et al. However, an important step of the present work is to reduce the SF’s core size to counteract the the appearance of higher-order modes at shorter wavelengths which would otherwise spoil the mode purity. Using the acoustic LPG in combination with the SF produces a versatile device to generate CVBs and other phase structures beams. This fiber-optical method offers beam profiles of high quality and achieves good directional stability of the emitted beam. Moreover, the device design is simple and can be realized at low cost. Future developments of the acoustic LPG will aim at applications to fiber-optical sensors and optical near-field microscopy. / Diese Arbeit behandelt die Entwicklung und Anwendung eines akustischen langperiodischen Fasergitters (LPG) in Verbindung mit einer optischen Spezialfaser (SF). Das akustische LPG wandelt ausgewählte optische Modi der SF um. Einige dieser Modi weisen eine komplexe, zylindersymmetrische Polarisations- und Intensitätsverteilung auf. Diese sind eine Form der so genannten zylindrischen Vektor-Strahlen (CVBs), welche in zahlreichen Gebieten der wissenschaftlichen und angewandten Optik zum Einsatz kommen. In dieser Arbeit wird eine Anwendung auf die hochauflösende Lichtmikroskopie demonstriert. Die fokale Feldverteilung wird dabei durch die Auswahl der vom LPG erzeugten Modi, welche zur Beleuchtung genutzt werden, eingestellt. Als Nachweis wird die entstehende laterale Feldverteilung mithilfe eines Goldpartikels (Durchmesser 30 Nanometer) vermessen. Aufbau und Test des akustischen LPGs werden im Detail besprochen. Eine wichtige Komponente ist ein piezoelektrischer Wandler, der akustische Biegewellen in der SF anregt. Diese sind die Ursache der Umwandlung optischer Modi. Die maximale Konversionseffizienz betrug 85% bei 785 nm (optischer) Wellenlänge. Die Effizienz ist derzeit hauptsächlich durch die Lage der akustischen Resonanzfrequenzen des Wandlers und deren Bandbreite begrenzt. Die benutzte SF spaltet die Ausbreitungskonstanten von Polarisationsmodi zweiter Ordnung auf, sodass diese individuell angeregt werden können und weniger anfällig gegen über Störungen der Faser sind, als das bei gewöhnlichen, schwach führenden Glasfasern der Fall ist. Das zu Grunde liegende Brechzahlprofil des Faserkerns wurde von Ramachandran et al. entwickelt. Für diese Arbeit wurde jedoch die Ausdehnung des Profils verkleinert – ein erster Schritt um Anwendungen bei kürzeren optischen Wellenlängen zu ermöglichen. Es werden numerische Simulationen mit der Methode der multiplen Multipole zur Berechnung der Modenfelder und den zugehörigen Propagationskonstanten vorgestellt. Diese zeigen u. a. den starken Einfluss von geometrischen Veränderungen des Faserkerns. Basierend auf den Simulationsergebnissen wird ein einfaches Kopplungsschema für die Modi entwickelt, welches ein qualitatives Verständnis der experimentellen Ergebnisse ermöglicht. In Kombination bilden die SF und das LPG ein vielseitiges Gerät zur Erzeugung von CVBs und anderen Strahlen mit komplexer Phasenstruktur. Die Methode besticht durch hohe Qualität des Strahlprofils, stabile Abstrahlrichtung, einfachen Aufbau, elektronische Steuerbarkeit und geringe Materialkosten. Zukünftige Weiterentwicklungen des akustischen LPGs zielen auf die Anwendung in faseroptischen Sensoren und in der optischen Nahfeldmikroskopie ab.
333

Mutual interactions of femtosecond pulses and transient gratings in nonlinear optical spectroscopy

Nolte, Stefan 16 November 2018 (has links)
This work is dedicated to a comprehensive experimental study on the interaction of femtosecond laser pulses with the nonlinear optical medium lithium niobate. The nonlinear optical response in the nanosecond regime was already studied extensively with a variety of techniques, whereas femtosecond pulses were mainly used in transient absorption or transient grating experiments. Naturally, the temporal resolution of these measurements depends on the pulse duration, however, dynamics during the pulse excitation were barely investigated. The motivation of this work is to widen the limits of femtosecond spectroscopy, not only to temporally resolve faster nonlinear optical processes, but further to show a sensitivity to other coupling mechanisms between the pulses and the material. Especially, the role of transient, dynamic holographic gratings is investigated with a careful determination of the pulse duration, bandwidth and frequency chirp. A basis of this work is established in the first part by studying the material response via light-induced absorption before focusing on the main topic, the pulse interaction with elementary (holographic) gratings, both self-induced and static, in the second part. By this detailed study, several features of femtosecond laser pulses, holographic gratings and the ultrafast material response can be revealed: (i) grating recording is feasible even with pulses of different frequencies, provided that their pulse duration is sufficiently short, (ii) grating based pulse coupling causes a pronounced energy transfer even in a common pump-probe setup for transient absorption measurements with (non-)degenerated frequencies, (iii) beyond expectation, oscillations in the phonon frequency range become apparent in different measurements. The presented results point towards appropriate future experiments to obtain a more consistent, microscopic model for the ultrafast response of the crystal, involving the interplay between photo-generated polarons, self-induced gratings, and phonons.
334

Polarization mode excitation in index-tailored optical fibers by acoustic long period gratings: Development and Application

Zeh, Christoph 05 November 2013 (has links)
The present work deals with the development and application of an acoustic long-period fiber grating (LPG) in conjunction with a special optical fiber (SF). The acoustic LPG converts selected optical modes of the SF. Some of these modes are characterized by complex, yet cylindrically symmetric polarization and intensity patterns. Therefore, they are the guided variant of so called cylindrical vector beams (CVBs). CVBs find applications in numerous fields of fundamental and applied optics. Here, an application to high-resolution light microscopy is demonstrated. The field distribution in the tight microscope focus is controlled by the LPG, which in turn creates the necessary polarization and intensity distribution for the microscope illumination. A gold nanoparticle of 30 nm diameter is used to probe the focal field with sub-wavelength resolution. The construction and test of the acoustic LPG are discussed in detail. A key component is the piezoelectric transducer that excites flexural acoustic waves in the SF, which are the origin of an optical mode conversion. A mode conversion efficiency of 85% was realized at 785 nm optical wavelength. The efficiency is, at present, mainly limited by the spectral positions and widths of the transducer’s acoustic resonances. The SF used with the LPG separates the propagation constants of the second-order polarization modes, so they can be individually excited and are less sensitive to distortions than in standard weakly-guiding fibers. The influence of geometrical parameters of the fiber core on the propagation constant separation and on the mode fields is studied numerically using the multiple multipole method. From the simulations, a simple mode coupling scheme is developed that provides a qualitative understanding of the experimental results achieved with the LPG. The refractive index profile of the fiber core was originally developed by Ramachandran et al. However, an important step of the present work is to reduce the SF’s core size to counteract the the appearance of higher-order modes at shorter wavelengths which would otherwise spoil the mode purity. Using the acoustic LPG in combination with the SF produces a versatile device to generate CVBs and other phase structures beams. This fiber-optical method offers beam profiles of high quality and achieves good directional stability of the emitted beam. Moreover, the device design is simple and can be realized at low cost. Future developments of the acoustic LPG will aim at applications to fiber-optical sensors and optical near-field microscopy.:Abstract / Kurzfassung iii Table of contents v 1 Introduction 1 2 Fundamentals of optical waveguides 5 2.1 Introduction 5 2.2 Maxwell’s equations and vector wave equations 5 2.3 Optical waveguides 7 2.3.1 Dielectric waveguides 7 2.3.2 Metallic waveguides 9 2.4 Numerical calculation of modes by the multiple multipole program 10 2.4.1 Representation of simulated mode fields 11 2.5 Overview of coupled mode theory 14 2.5.1 Coupled mode equations 14 2.5.2 Co-directional coupling 15 2.6 Summary and conclusions 16 3 Polarization control for fundamental and higher order modes 17 3.1 Introduction 17 3.2 Description of light polarization 18 3.2.1 Stokes parameters and the polarization ellipse 18 3.2.2 Polarization of light beams in free space 20 3.2.3 Polarization of light beams in optical fibers 21 3.3 Short overview of cylindrical vector beam generation 22 3.4 Excitation of cylindrical vector beams in optical fibers 27 3.4.1 Free-beam techniques 27 3.4.2 In-fiber techniques 29 3.5 Polarization control in optical fibers 30 3.5.1 Phase matching and the beat length 30 3.5.2 Polarization-maintaining single-mode fibers 32 3.5.3 Higher-order mode polarization-maintaining fibers 32 3.6 Summary and conclusions 34 4 Simulation of core-ring-fibers 36 4.1 Introduction 36 4.2 Model geometries for index-tailored optical fiber 37 4.2.1 Special fiber and fabrication 37 4.2.2 Elliptical core boundaries 39 4.2.3 Overview of the applied MMP Models 41 4.3 Simulation results for circular core geometry 43 4.3.1 Mode fields 43 4.3.2 Scaling of the core radii 43 4.3.3 Wavelength dependence 48 4.4 Simulation results for non-circular geometry 50 4.4.1 Mode fields 50 4.4.2 Effects of individual rotation angles 53 4.4.3 Wavelength dependence 56 4.5 Summary and conclusions 61 5 Long period fiber gratings 63 5.1 Introduction 63 5.2 Principle of long-period fiber gratings 64 5.2.1 Results from coupled mode theory 64 5.2.2 Types of long-period gratings 65 5.2.3 Properties of acoustic long-period fiber gratings 67 5.3 Acoustic long-period grating setup 68 5.3.1 Transducer 69 5.3.2 Mechanical coupling 72 5.3.3 Acoustic dispersion of an optical fiber 75 5.3.4 Optical setup 77 5.3.5 Comparison to other acoustic LPG geometries 81 5.4 Experimental results 82 5.4.1 Transmission spectra 82 5.4.2 Discussion of transmission results 88 5.4.3 Direct mode field observation 93 5.4.4 Discussion of mode field observations 97 5.4.5 Time behavior and grating amplitude modulation 99 5.5 Summary and conclusions 101 6 Application of higher order fiber modes for far-field microscopy 104 6.1 Introduction 104 6.2 Complex beams in high-resolution far-field microscopy 104 6.3 Theoretical considerations 106 6.4 Experimental details 111 6.5 Results 114 6.6 Discussion 118 6.7 Summary and conclusions 122 7 Summary and outlook 124 Acknowledgments 139 Publications related to this work 142 List of figures 144 List of tables 150 List of acronyms 151 / Diese Arbeit behandelt die Entwicklung und Anwendung eines akustischen langperiodischen Fasergitters (LPG) in Verbindung mit einer optischen Spezialfaser (SF). Das akustische LPG wandelt ausgewählte optische Modi der SF um. Einige dieser Modi weisen eine komplexe, zylindersymmetrische Polarisations- und Intensitätsverteilung auf. Diese sind eine Form der so genannten zylindrischen Vektor-Strahlen (CVBs), welche in zahlreichen Gebieten der wissenschaftlichen und angewandten Optik zum Einsatz kommen. In dieser Arbeit wird eine Anwendung auf die hochauflösende Lichtmikroskopie demonstriert. Die fokale Feldverteilung wird dabei durch die Auswahl der vom LPG erzeugten Modi, welche zur Beleuchtung genutzt werden, eingestellt. Als Nachweis wird die entstehende laterale Feldverteilung mithilfe eines Goldpartikels (Durchmesser 30 Nanometer) vermessen. Aufbau und Test des akustischen LPGs werden im Detail besprochen. Eine wichtige Komponente ist ein piezoelektrischer Wandler, der akustische Biegewellen in der SF anregt. Diese sind die Ursache der Umwandlung optischer Modi. Die maximale Konversionseffizienz betrug 85% bei 785 nm (optischer) Wellenlänge. Die Effizienz ist derzeit hauptsächlich durch die Lage der akustischen Resonanzfrequenzen des Wandlers und deren Bandbreite begrenzt. Die benutzte SF spaltet die Ausbreitungskonstanten von Polarisationsmodi zweiter Ordnung auf, sodass diese individuell angeregt werden können und weniger anfällig gegen über Störungen der Faser sind, als das bei gewöhnlichen, schwach führenden Glasfasern der Fall ist. Das zu Grunde liegende Brechzahlprofil des Faserkerns wurde von Ramachandran et al. entwickelt. Für diese Arbeit wurde jedoch die Ausdehnung des Profils verkleinert – ein erster Schritt um Anwendungen bei kürzeren optischen Wellenlängen zu ermöglichen. Es werden numerische Simulationen mit der Methode der multiplen Multipole zur Berechnung der Modenfelder und den zugehörigen Propagationskonstanten vorgestellt. Diese zeigen u. a. den starken Einfluss von geometrischen Veränderungen des Faserkerns. Basierend auf den Simulationsergebnissen wird ein einfaches Kopplungsschema für die Modi entwickelt, welches ein qualitatives Verständnis der experimentellen Ergebnisse ermöglicht. In Kombination bilden die SF und das LPG ein vielseitiges Gerät zur Erzeugung von CVBs und anderen Strahlen mit komplexer Phasenstruktur. Die Methode besticht durch hohe Qualität des Strahlprofils, stabile Abstrahlrichtung, einfachen Aufbau, elektronische Steuerbarkeit und geringe Materialkosten. Zukünftige Weiterentwicklungen des akustischen LPGs zielen auf die Anwendung in faseroptischen Sensoren und in der optischen Nahfeldmikroskopie ab.:Abstract / Kurzfassung iii Table of contents v 1 Introduction 1 2 Fundamentals of optical waveguides 5 2.1 Introduction 5 2.2 Maxwell’s equations and vector wave equations 5 2.3 Optical waveguides 7 2.3.1 Dielectric waveguides 7 2.3.2 Metallic waveguides 9 2.4 Numerical calculation of modes by the multiple multipole program 10 2.4.1 Representation of simulated mode fields 11 2.5 Overview of coupled mode theory 14 2.5.1 Coupled mode equations 14 2.5.2 Co-directional coupling 15 2.6 Summary and conclusions 16 3 Polarization control for fundamental and higher order modes 17 3.1 Introduction 17 3.2 Description of light polarization 18 3.2.1 Stokes parameters and the polarization ellipse 18 3.2.2 Polarization of light beams in free space 20 3.2.3 Polarization of light beams in optical fibers 21 3.3 Short overview of cylindrical vector beam generation 22 3.4 Excitation of cylindrical vector beams in optical fibers 27 3.4.1 Free-beam techniques 27 3.4.2 In-fiber techniques 29 3.5 Polarization control in optical fibers 30 3.5.1 Phase matching and the beat length 30 3.5.2 Polarization-maintaining single-mode fibers 32 3.5.3 Higher-order mode polarization-maintaining fibers 32 3.6 Summary and conclusions 34 4 Simulation of core-ring-fibers 36 4.1 Introduction 36 4.2 Model geometries for index-tailored optical fiber 37 4.2.1 Special fiber and fabrication 37 4.2.2 Elliptical core boundaries 39 4.2.3 Overview of the applied MMP Models 41 4.3 Simulation results for circular core geometry 43 4.3.1 Mode fields 43 4.3.2 Scaling of the core radii 43 4.3.3 Wavelength dependence 48 4.4 Simulation results for non-circular geometry 50 4.4.1 Mode fields 50 4.4.2 Effects of individual rotation angles 53 4.4.3 Wavelength dependence 56 4.5 Summary and conclusions 61 5 Long period fiber gratings 63 5.1 Introduction 63 5.2 Principle of long-period fiber gratings 64 5.2.1 Results from coupled mode theory 64 5.2.2 Types of long-period gratings 65 5.2.3 Properties of acoustic long-period fiber gratings 67 5.3 Acoustic long-period grating setup 68 5.3.1 Transducer 69 5.3.2 Mechanical coupling 72 5.3.3 Acoustic dispersion of an optical fiber 75 5.3.4 Optical setup 77 5.3.5 Comparison to other acoustic LPG geometries 81 5.4 Experimental results 82 5.4.1 Transmission spectra 82 5.4.2 Discussion of transmission results 88 5.4.3 Direct mode field observation 93 5.4.4 Discussion of mode field observations 97 5.4.5 Time behavior and grating amplitude modulation 99 5.5 Summary and conclusions 101 6 Application of higher order fiber modes for far-field microscopy 104 6.1 Introduction 104 6.2 Complex beams in high-resolution far-field microscopy 104 6.3 Theoretical considerations 106 6.4 Experimental details 111 6.5 Results 114 6.6 Discussion 118 6.7 Summary and conclusions 122 7 Summary and outlook 124 Acknowledgments 139 Publications related to this work 142 List of figures 144 List of tables 150 List of acronyms 151
335

Titanium Dioxide Based Microtubular Cavities for On-Chip Integration

Madani, Abbas 03 March 2017 (has links) (PDF)
Following the intensive development of isolated (i.e., not coupled with on-chip waveguide) vertically rolled-up microtube ring resonators (VRU-MRRs) for both active and passive applications, a variety of microtube-based devices has been realized. These include microcavity lasers, optical sensors, directional couplers, and active elements in lab-on-a-chip devices. To provide more advanced and complex functionality, the focus of tubular geometry research is now shifting toward (i) refined vertical light transfer in 3D stacks of multiple photonic layers and (ii) to make microfluidic cooling system in the integrated optoelectronic system. Based on this motivation, this PhD research is devoted to the demonstration and the implementation of monolithic integration of VRU-MRRs with photonic waveguides for 3D photonic integration and their optofluidic applications. Prior to integration, high-quality isolated VRU-MRRs on the flat Si substrate are firstly fabricated by the controlled release of differentially strained titanium-dioxide (TiO2) bilayered nanomembranes. The fabricated microtubes support resonance modes for both telecom and visible photonics. The outcome of the isolated VRU-MRRs is a record high Q (≈3.8×10^3) in the telecom wavelength range with optimum tapered optical fiber resonator interaction. To further study the optical modes in the visible and near infrared spectral range, μPL spectroscopy is performed on the isolated VRU-MRRs, which are activated by entrapping various sizes of luminescent nanoparticles (NPs) within the windings of rolled-up nanomembranes based on a flexible, robust and economical method. Moreover, it is realized for the first time, in addition to serving as light sources that NPs-aggregated in isolated VRU-MRRs can produce an optical potential well that can be used to trap optical resonant modes. After achieving all the required parameters for creating a high-quality TiO2 VRU-MRR, the monolithic integration of VRU-MRRs with Si nanophotonic waveguides is experimentally demonstrated, exhibiting a significant step toward 3D photonic integration. The on-chip integration is realized by rolling up 2D pre-strained TiO2 nanomembranes into 3D VRU-MRRs on a microchip which seamlessly expanded over several integrated waveguides. In this intriguing vertical transmission configuration, resonant filtering of optical signals at telecom wavelengths is demonstrated based on ultra-smooth and subwavelength thick-walled VRU-MRRs. Finally, to illustrate the usefulness of the fully integrated VRU-MRRs with photonic waveguides, optofluidic functionalities of the integrated system is investigated. In this work, two methods are performed to explore optofluidic applications of the integrated system. First, the hollow core of an integrated VRU-MRR is uniquely filled with a liquid solution (purified water) by setting one end of the VRU-MRRs in contact with a droplet placed onto the photonic chip via a glass capillary. Second, the outside of an integrated VRU-MRR is fully covered with a big droplet of liquid. Both techniques lead to a significant shift in the WGMs (Δλ≈46 nm). A maximum sensitivity of 140 nm/refractive index unit, is achieved. The achievements of this PhD research open up fascinating opportunities for the realization of massively parallel optofluidic microsystems with more functionality and flexibility for analysis of biomaterials in lab-on-a-tube systems on single chips. It also demonstrates 3D photonic integration in which optical interconnects between multiple photonic layers are required.
336

Artificial photosynthesis - 4-Aminobenzoic acids effect on charge transfer in a photo catalytic system

Moberg, Simon January 2019 (has links)
Artificial photosynthesis is used to harvest solar energy and store it in the form of chemical bonds. The system of interest in this study does this by splitting water into hydrogen and oxygen gas through a plasmon assisted process, collective oscillations from free electron gas. This is a renewable way to store energy that could be used as an alternative to fossil based fuel. In this study, a small part of this photo catalytic system is studied, namely the interaction between plasmonically active silver nanoparticles (Ag NPs) transferring photo-excited electrons via a linker molecule, 4-aminobenzoic acid (pABA). The pABA linker molecule transfers charge from the Ag surface to a semiconductor and a catalyst performing the water splitting. The pABA can bind in different ways onto the Ag-surface and the aim of this study is to examine which bond is strongest and which best enables charge transfer. To this purpose three systems where simulated quantum mechanically using a supercomputer. The total free energy of the systems was computed and compared. Out of the three studied binding sites, the hollow-site bond (pABA binding to three silver atoms) was found to have the lowest energy, meaningit's the strongest of the possible bonds. Additionally it was found that the band gap (the energy needed to transfer charge) for the pABA decreased when bound to the Ag-surface. The hollow-site bound pABA also had the smallest band gap, meaning it requires the least energy to transfer a charge and should therefore be the best bond fitted for the photo catalytic system. / Artificiell fotosyntes används för att absorbera solenergi och förvara den i formen av kemiska bindningar. Systemet som används i denna studie gör detta genom att splittra vatten till vätgas och syrgas genom en plasmon assisterad process. Detta är ett förnyelsebart sätt att förvara energi och kan användas som ett alternativ till fossila bränslen. I denna studie studeras en liten del utav detta fotokatalytiska system nämligen interaktionen där plasmonaktiva silvernanopartiklar (Ag NPs) överför foto-exciterade elektroner genom molekyllänken 4-aminobensoesyra (pABA). Molekyllänken pABA överför laddning från silverytan till en halvledare och en katalys som utför splittringen av vattnet. pABA kan binda på olika sätt tillen silveryta och denna studie syftar till att undersöka vilken utav bindningarna som är starkast och vilken som effektivast överför laddning. För att göra detta simulerades tre system kvantmekaniskt med hjälp av en superdator, ett system för varje sorts bindning. Den totala fria energin av systemen beräknades och jämfördes. Av de tre undersökta bindningarna hadehollow-site bindningen (pABA som binder till tre silveratomer) längst energi, vilket betyder att det är den starkaste av bindningarna. Utöver detta så visade det sig att bandgapet (energin som krävs för att överföra laddning) minskade för pABA när den var bunden till Ag-ytan. Hollow-site bundet pABA hade även minst bandgap, vilket betyder att den kräver minst energi för att överföra laddning och är därmed den mest effektiva bindningen för det fotokatalytiska systemet.
337

Structural integrity of highly ionized peptides

Eliah Dawod, Ibrahim January 2019 (has links)
In order to understand the behaviour and function of proteins, their three dimensional structure needs to be known. Determination of macro-molecules’ structures is done using X-ray diffraction or electron microscopy, where the resulting diffraction pattern is used for molecular reconstruction. These methods are however limited by radiation damage.The aim of this work is to study radiation damage of peptides in proteins using computer simulations. Increased understanding of the atomic and molecular dynamics can contribute to an improvement of the method ofimaging biological molecules. To be able to describe the processes that take place as accurately as possible, the problem must treated quantum mechanically.Thus, the simulations are performed with molecular dynamics based on first principles. In order to capture the dynamics of the excited states of the molecule when exposed to X-rays, time-dependent density functional theory with delta self-consistent field is used. These simulations are compared to ground state simulations. The results of the thesis conclude that the excited and ground state simulations result in differences in the dynamics, which are most pronounced for lager molecules.
338

Designing radiation protection for a linear accelerator : using Monte carlo-simulations / Framtagning av förslag på förstärkt strålskydd för en linjäraccelerator : med hjälp av Monte Carlo-simuleringar

Lindahl, Jonatan January 2019 (has links)
The department of Radiation Sciences at Umeå University has obtained an old linear accelerator, intended for educational purposes. The goal of this thesis was to find proper reinforced radiation protection in an intended bunker (a room with thick concrete walls), to ensure that the radiation outside the bunker falls within acceptable levels. The main method was with the use of Monte Carlo-simulations. To properly simulate the accelerator, knowledge of the energy distribution of emitted radiation was needed. For this, a novel method for spectra determination, using several depth dose measurements including off-axis, was developed. A method that shows promising results in finding the spectra when measurements outside the primary beam are included. The found energy spectrum was then used to simulate the accelerator in the intended bunker. The resulting dose distribution was visualized together with 3D CAD-images of the bunker, to easily see in which locations outside the bunker where the dose was high. An important finding was that some changes are required to ensure that the public does not receive too high doses of radiation on a public outdoor-area that is located above the bunker. Otherwise, the accelerator is only allowed to be run 1.8 hours per year. A workaround to this problem could be to just plant a thorn bush, covering the dangerous area of radius 3m. After such a measure has been taken, which is assumed in the following results, the focus moves to the radiation that leaks into the accelerator’s intended control room, which is located right outside the bunker’s entrance door. The results show that the accelerator is only allowed to be run for a maximum of 6.1 or 3.3 hours per year (depending on the placement of the accelerator in the room), without a specific extra reinforced radiation protection consisting mainly of lead bricks. With the specific extra protection added, the accelerator is allowed to be run 44 or 54 hours per year instead, showing a distinct improvement. However, the dose rate to the control room was still quite high, 13.7 μGy/h or 11.2 μGy/h, compared to the average dose received by someone living in Sweden, which is 0.27 μGy/h. Therefore, further measures are recommended. This is however a worst case scenario, since the leakage spectrum from the accelerator itself was simulated as having the same energy spectrum as the primarybeam at 0.1 % of the intensity, which is the maximum leakage dose according to the specifications for the accelerator. This is probably an overestimation of the intensity. Also, the energy spectra of the leakage is probably of lower energy than the primary beam in at least some directions. Implementing more knowledge of the leak spectra in future work, should therefore result in more allowed run hours for the accelerator.
339

Electromagnetic Manipulation of Individual Nano- and Microparticles

Kuhlicke, Alexander 17 November 2017 (has links)
Gegenstand der vorliegenden Dissertation ist die Untersuchung von einzelnen nano- und mikrometergroßen Partikeln, zum Verständnis und zur Entwicklung von neuartigen nanooptischen Elementen, wie Lichtquellen und Sensoren, sowie Strukturen zum Aufsammeln und Leiten von Licht. Neben der Charakterisierung stehen dabei verschiedene Methoden zur elektromagnetischen Manipulation im Vordergrund, die auf eine Kontrolle der Position oder der Geometrie der Partikel ausgerichtet sind. Die gezielten Manipulationen werden verwendet, um vorausgewählte Partikel zu isolieren, modifizieren und transferieren. Dadurch können Partikel zu komplexeren photonischen Systemen kombiniert werden, welche die Funktionalität der einzelnen Bestandteile übertreffen. Der Hauptteil der Arbeit behandelt Experimente mit freischwebenden Partikeln in linearen Paul-Fallen. Durch die räumliche Isolation im elektrodynamischen Quadrupolfeld können Partikel mit reduzierter Wechselwirkung untersucht werden. Neben der spektroskopischen Charakterisierung von optisch aktiven Partikeln (farbstoffdotierte Polystyrol-Nanokügelchen, Cluster aus Nanodiamanten mit Stickstoff-Fehlstellen-Zentren, Cluster aus kolloidalen Quantenpunkten) sowie optischen Resonatoren (plasmonische Silber-Nanodrähte, sphärische Siliziumdioxid-Mikroresonatoren) werden neu entwickelte Methoden zur Manipulation vorgestellt, mit denen sich individuelle Partikel freischwebend kombinieren und elektromagnetisch koppeln sowie aus der Falle auf optischen Fasern zur weiteren Untersuchung bzw. zur Funktionalisierung photonischer Strukturen ablegen lassen. In einem weiteren Teil der Arbeit wird eine Methode zur Manipulation der Geometrie von plasmonischen Nanopartikeln vorgestellt. Dabei werden einzelne Goldkugeln auf einem Deckglas mit einem fokussierten Laserstrahl zum Schmelzen gebracht und verformt. Durch die kontrollierte und reversible Veränderung der Symmetrie lassen sich die lokalisierten Oberflächenplasmonen des Partikels gezielt beeinflußen. / The topic of the present thesis is the investigation of single nano- and microsized particles for the understanding and design of novel nanooptical elements as light sources and sensors, as well as light collecting and guiding structures. In addition to particle characterization, the focus is on different methods for electromagnetic particle manipulation aimed at controlling the particle’s position or geometry. The specific manipulations are used for isolation, modification and transfer of preselected particles, enabling combination of particles into more complex photonic systems, which exceed the functionalities of the individual constituents. The main part of this work deals with experiments on levitated particles in linear Paul traps. Due to the spatial isolation in the electrodynamic quadrupole field, particles can be investigated with reduced environmental interaction. In addition to spectroscopic characterization of optically active particles (dye-doped polystyrene nanobeads, clusters of nanodiamonds with nitrogen vacancy defect centers, clusters of colloidal quantum dots) and particles with optical resonances (plasmonic silver nanowires, spherical silica microresonators) new manipulation methods are presented that enable assembly and electromagnetic coupling of individual, levitated particles as well as deposition of particles from the trap on optical fibers for further characterization or functionalization of photonic structures. In a further part of this work a method to manipulate the geometry of plasmonic nanoparticles is presented. Single gold nanospheres on a coverslip are melted and shaped with a focused laser beam. The localized surface plasmons can be influenced specifically by controlled and reversible changes of the particle symmetry.
340

Developing a Combinatorial Synthesis Database Tool

Quaglia Casal, Luciano January 2018 (has links)
Thin-film solar cell research is central to the electricity production of the near future. Photovoltaic technologies based on silicon have a significant portion of the global market and installed capacity. Thin-film solar cells are port of the emerging photovoltaic technologies that are challenging silicon for a part of the electricity production based on solar power. These thin-film technologies, such as copper indium gallium selenide (CIGS) and cadmium telluride (CdTe), are lower cost and require less energy to produce, but also require rare materials. An alternative to these technologies are thin-film solar cells based on more abundant materials. To develop these new materials at Uppsala University, combinatorial synthesis is used. This method produces a significant amount of data across different measurement methods. The data needs to be analysed and combined to gather information about the characteristics of the materials being developed. To facilitate the analysis and combination of data, a database tool was created in MATLAB. The result is a program that allows its User to combine energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy and Photoluminescence spectroscopy measurements done on solar cell absorber layers. Absorber layers are the section of solar cells where sun lighet is absorbed, and electron-hole pairs are created. The program provides multiple figures and graphs combining the different data collected, enabling the User to draw conclusions about the characteristics of the sample and its suitability as an absorber layer. The combinatorial synthesis database tool created could be user for combinatorial synthesis analysis of other material samples that are not necessarily absorber layers for thin-film solar cells. This report describes both the development of the tool and the code itself.

Page generated in 0.0433 seconds