• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 9
  • 9
  • 9
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photoschaltbare Koordinationskomplexe: Festkörpereinbettung und Schwingungsspektroskopie mit MIR-Femtosekundenpulsen

Springfeld, Kristin 31 July 2013 (has links)
In der vorliegenden Arbeit werden Koordinationskomplexe als neues Material in der Photonik diskutiert. Diese zeigen als zentralen Prozess eine lichtinduzierte Isomerisierung von einem elektronischen Grundzustand in mindestens ein metastabiles Isomer. Die Isomerisierung wird neben einer ausgeprägten Photochromie auch von photorefraktiven Eigenschaften begleitet. Die Verwendung der vielversprechenden Koordinationskomplexe in der Photonik scheiterte bisher an deren Einbettung in Festkörpermatrizen. Aus diesem Grund ist in dieser Arbeit ein Vertreter der Klasse der Ruthenium-Sulfoxide, der [Ru(bpy)2OSO]PF6-Komplex, in eine Polymermatrix Polydimethylsiloxan eingebettet worden. Es zeigt sich, dass der Komplex erstmalig erfolgreich in einen Festkörper eingebettet werden kann, insbesondere bei gleichzeitiger Erhaltung der photofunktionalen Eigenschaften. Dabei bleibt der lichtinduzierte Isomerisierungs-Prozess durch die geänderte dielektrische Umgebung nahezu unbeeinflusst, wohingegen die thermische Stabilität der metastabilen Isomere gezielt durch die viskosere Umgebung geändert werden kann. Die experimentell erhaltenen Relaxationszeiten der zwei metastabilen Isomere lassen sich bestimmen und sind verglichen mit der Lösung um den Faktor 100 erhöht. Die Untersuchungen der makroskopischen und mikroskopischen Eigenschaften des Komplexes in dieser Arbeit zeigen, dass Bildstrukturen in die Probe beleuchtet werden können. Ein deutlicher Kontrast und eine ausgeprägte Flankensteilheit für die RGB-Farben zwischen Stellen, in denen die Moleküle im Grundzustand und in den metastabilen Zuständen vorliegen, bleibt dabei erhalten. Insbesondere kann ein räumliches Auflösungsvermögen in der Größenordnung von 16 µm unter dem Mikroskop bestimmt werden. Diese Eigenschaften zeigen ein großes Potential für die Verwendung in RGB-Displays und optischer Datenspeichern. Ein zweiter Schwerpunkt dieser Arbeit behandelt den Aufbau eines Spektrometers zur Detektion von Femtosekunden-Pulsen im mittleren infraroten Spektralbereich und der spektralen Auflösung von Vibrationsbanden. Dies ermöglicht, die bei der Isomerisierung ablaufenden Prozesse verstehen und auflösen zu können. Zu diesem Zweck sind Kalibrierungen der verwendeten Komponenten des Aufbaus durchgeführt worden. Anhand des Kalibrierungsmaterials Lithiumniobat konnte eine ausgeprägte OH^--Streckschwingung mit dem entwickelten Aufbau nachgewiesen werden. Insbesondere werden Methoden zum experimentellen Aufbau des Spektrometers und zur Auswertung mit anschließender Fehlerbetrachtung behandelt und ausgearbeitet. Für die Detektion der NO-Streckschwingung im Koordinationskomplex Natriumnitrosylprussiat werden Optimierungen des Aufbaues und der Methodik vorgenommen, um kleinste Transmissionsänderungen detektieren zu können. Experimentell konnte in dieser Arbeit gezeigt werden, dass Absolutmessungen in der Probe mit dem verwendeten Aufbau möglich sind und mit Messungen eines FTIR-Spektrometers vergleichbare Ergebnisse liefern. Im Anschluss sind Messungen der Probe unter Lichtbestrahlung durchgeführt worden, um Änderungen der Extinktion zu detektieren. Hier treten experimentelle Grenzen der Messmethodik zu Tage, die im Rahmen von Optimierungsvorschlägen diskutiert werden. Abschließend werden beide verwendete Substanzklassen im Hinblick auf mögliche Anwendungen solcher Koordinationskomplexe in der Photonik diskutiert. Es lassen sich Schlüsseleigenschaften holographischer Materialien auf die Koordinationskomplexe übertragen, um sie mit herkömmlichen photorefraktiven Materialien vergleichen zu können. Durch die erfolgreiche Einbettung eines Koordinationskomplexes steht jetzt ein vielversprechendes optisches Material zur Verfügung, welches in der Photonik eingesetzt werden kann.
2

Berührungslose optische Sensorik an technischen Oberflächen: Neue Konzepte und die Rolle ultrakurzer Laserpulse

Eggert, Juliane 16 May 2018 (has links)
Der Schwerpunkt der vorliegenden kumulativen Dissertation ist die optische Untersuchung von funktionalen Ribletstrukturen und die Entwicklung eines optischen Sensors zur Erfassung von funktionskritischen Formabweichungen. Ein Teil dieser Arbeit ist in den im Anhang aufgeführten Publikationen bereits veröffentlicht. In Kapitel 2 werden die Untersuchungen zur Licht-Materie-Wechselwirkung mit der Ribletstruktur vorgestellt. Im Mittelpunkt steht dabei zunächst die Entwicklung eines experimentellen Aufbaus zur Charakterisierung der Struktur und insbesondere zur Detektion von Degradationen im Sub-Mikrometerbereich, wie sie im Einsatz an Flugzeugoberflächen zu erwarten ist. Der Aufbau besteht aus einer Lichtquelle und drei Detektionseinheiten, die bei senkrechtem Lichteinfall die resultierende Streuung der Ribletstruktur in Richtung 0° und ±45° aufnehmen. Es werden Anforderungen an die Lichtquelle des Sensors bestimmt, darunter Werte für Mindest- und Maximalintensität für ein ausreichendes Signal-Rausch-Verhältnis, eine senkrechte Lichtpolarisation, Strahldurchmesser von 1 mm bis 1,5 mm und es wird der geringe Einfluss von Wellenlänge und Strahldivergenz gezeigt. Darüber hinaus werden ultrakurze Laserpulse im Ribletsensor eingesetzt und die Verwendung im Kontext der Qualitätskontrolle diskutiert. Hierbei wird insbesondere der Einfluss von Pulsdauer und Bandbreite von linear gechirpten Pulsen auf die Entstehung eines stationären Interferenzmusters im 45°-Signal untersucht. Die Ergebnisse von Experimenten und Simulation zeigen übereinstimmend, dass der Interferenzkontrast entscheidend von der zeitlichen und spektralen Überlagerung der bei Reflexion an den Ribletflanken gegeneinander verzögerten Teilpulse abhängt. Es ist möglich, durch geeignete Wahl der Pulsparameter die Entstehung eines Interferenzmusters zu kontrollieren. Im Sensor ist ein glattes Signal in Richtung ±45° vorteilhaft und ermöglicht die Detektion mittels Photodiodenarrays ohne Fehler aufgrund des Moiré-Effekts. Ein weiteres Thema dieser Arbeit ist die Untersuchung der Streueigenschaften von Titandioxid-Nanopartikeln in Kapitel 3. Es wird die Messmethode der diffusen Reflektanz, sowie die Auswertung mittels Tauc-Plot vorgestellt. Mithilfe dessen wird die Bandlückenenergie der untersuchten Rutil- und Anatas-Nanopartikel mit E(Rutil) = 3.04 eV und E(Anatas) = 3.19 eV bestimmt, welche mit den Literaturwerten übereinstimmen. Mithilfe dieser Werte kann eine untere Grenze des Wellenlängenbereichs bestimmt werden, in dem Untersuchungen der nichtlinearen diffusen Femtosekunden-Reflektometrie zuverlässig ausgewertet werden können. Die Ergebnisse dieser Messmethode zeigen die Frequenzkonversionseigenschaften der Nanopartikel und eignen sich als Unterscheidungsmerkmal von polaren und unpolaren Kristallstrukturen.
3

Femtosekundenpuls injizierte kleine Polaronen in Lithiumniobat: Bildungs- und Transportdynamiken, Nachweis der Gitterverzerrung und nichtlinear optische Eigenschaften im mittleren infraroten Spektralbereich

Freytag, Felix 07 January 2019 (has links)
In dieser Arbeit werden elektronische und strukturelle Dynamiken durch Femtosekundenpuls injizierte kleine Polaronen in Lithiumniobat betrachtet, sowie die Auswirkungen auf die nichtlineare Optik mit Schwerpunkt auf die Holographie und den mittleren infraroten Spektralbereich untersucht.
4

Aufbau eines Experiments zur Untersuchung umweltrelevanter Prozesse von einzelnen levitierten Mikropartikeln mit Hilfe von elastischer und inelastischer Lichtstreuung sowie der Massenspektrometrie

Berge, Burkhard 26 January 2004 (has links)
Als Aerosol bezeichnet man ein Ensemble aus festen oder flüssigen Partikeln, getragen von einem gasförmigen Medium. Zur Untersuchung von einzelnen über längere Zeit berührungsfrei gespeicherten Modellaerosolpartikeln wurde ein Experiment aufgebaut und charakterisiert. Eine elektrodynamische Falle nach Paul dient zur berührungsfreien Speicherung. In verschiedenen Rezipienten können Umweltparameter, wie die Temperatur, der Druck und die Gaszusammensetzung kontrolliert werden. Mit Hilfe der elastischen Mie-Streung und der inelastischen Raman-Streuung monochromatischen Lichts wird auf die Zusammensetzung, die Größe und den Brechungsindex in situ rückgeschlossen. Eine Computer-basierte Mess- und Regelungstechnik ermöglicht Prozessstudien mit Messdauern von einigen Sekunden bis zu mehreren Tagen, in denen die Änderung oben genannter Partikeleigenschaften unter Vorgabe bestimmter Umweltparameter beobachtet werden können. Zur Abschätzung der Größe von sphärischen und kristallinen Partikeln wurde eine Methode entwickelt, die die Musteranalyse des Streulichtfernfelds mit Hilfe der räumlichen Fourier-Transformation als Grundlage hat.Schnelle Prozesse, wie z.B. die Bewegung des Teilchens in der Falle oder Phasenübergänge von gespeicherten Partikeln, können mit einer Hochgeschwindigkeitskamera aufgenommen und mit Musteranalyseverfahren charakterisiert werden.Schließlich wird die chemische Totalanalyse von einzelnen Partikeln unter Anwendung eines time-of-flight-Massenspektrometers beschrieben. Einzelne Partikel werden dazu mit Hilfe eines Transfersystems aus der Speicherumgebung in das Massenspektrometer überführt und anschließend ex situ analysiert.
5

Entwicklung und Einsatz der Immun-SERS-Mikroskopie zur Gewebe-basierten Tumordiagnostik

Salehi, Mohammad 09 September 2013 (has links)
Surface-enhanced Raman scattering (SERS) microscopy is a novel method of optical imaging for the localization and quantification of target molecules in cells and tissue specimens. The major advantages of SERS over fluorescence are quantification and spectral multiplexing due to the small line width of vibrational Raman bands. The position of the plasmon band of both hollow gold/silver nanoshells and silica-encapsulated gold nanoclusters can be tuned for maximum SERS enhancement upon red laser excitation, which is optimal for minimizing the disturbing autofluorescence of tissue. In this work, silica-encapsulated and non-encapsulated SERS particles were used for the localization of target proteins in prostate tissue specimens. Two different biofunctionalization methods were established for each type of SERS particles. The cross-linking method based on s-NHS/EDC chemistry was modified for covalently conjugating proteins to hollow gold/silver nanoshells and gold nanostars in order to minimize the aggregation of SERS nanoparticles during and after cross-linking. As an alternative to covalent conjugation chemistry, the noncovalent binding of antibodies to the SERS particles via an adapter protein (protein A/G) was established. The influence of several factors that determine the quality of results obtained by SERS imaging, such as the number of immuno-SERS conjugates, incubation time, antigen retrieval and blocking buffer, were investigated. Rapid SERS microscopy with 30 msec acquisition time per pixel was enabled by using silica-encapsulated gold nanoclusters for the localization of p63 proteins on prostate tissue specimens from healthy donors. Two-color SERS experiments for the parallel localization of PSA and p63 were performed with silica-encapsulated and non-encapsulated nanoshells. The quality of the results depends less on the nature of the surface chemistry of the nanoparticles (with or without silica encapsulation), but more on the blocking buffer and the antigen retrieval method. Silica-encapsulated gold nanoclusters were also used for the simultaneous quantification of three cytokines (IL1, IL8 and TNF- α) in a SERS-based sandwich immunoassay with a detection limit of ca. 0.3 pM. Keywords: Raman, SERS microscopy, biocompatibility of nanoparticles, cross-linking, antigen unmasking methods, antigen detection, immunohistochemistry, immunoassay.
6

Mutual interactions of femtosecond pulses and transient gratings in nonlinear optical spectroscopy

Nolte, Stefan 16 November 2018 (has links)
This work is dedicated to a comprehensive experimental study on the interaction of femtosecond laser pulses with the nonlinear optical medium lithium niobate. The nonlinear optical response in the nanosecond regime was already studied extensively with a variety of techniques, whereas femtosecond pulses were mainly used in transient absorption or transient grating experiments. Naturally, the temporal resolution of these measurements depends on the pulse duration, however, dynamics during the pulse excitation were barely investigated. The motivation of this work is to widen the limits of femtosecond spectroscopy, not only to temporally resolve faster nonlinear optical processes, but further to show a sensitivity to other coupling mechanisms between the pulses and the material. Especially, the role of transient, dynamic holographic gratings is investigated with a careful determination of the pulse duration, bandwidth and frequency chirp. A basis of this work is established in the first part by studying the material response via light-induced absorption before focusing on the main topic, the pulse interaction with elementary (holographic) gratings, both self-induced and static, in the second part. By this detailed study, several features of femtosecond laser pulses, holographic gratings and the ultrafast material response can be revealed: (i) grating recording is feasible even with pulses of different frequencies, provided that their pulse duration is sufficiently short, (ii) grating based pulse coupling causes a pronounced energy transfer even in a common pump-probe setup for transient absorption measurements with (non-)degenerated frequencies, (iii) beyond expectation, oscillations in the phonon frequency range become apparent in different measurements. The presented results point towards appropriate future experiments to obtain a more consistent, microscopic model for the ultrafast response of the crystal, involving the interplay between photo-generated polarons, self-induced gratings, and phonons.
7

Entwicklung eines UAV-basierten Systems zur Rehkitzsuche und Methoden zur Detektion und Georeferenzierung von Rehkitzen in Thermalbildern: Der Fliegende Wildretter

Israel, Martin 05 December 2016 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Entwicklung eines UAV-basierten Systems und der zugehörigen Methodenentwicklung zur automatisierten Rehkitzsuche in Feldern. Jedes Jahr sterben sehr viele Wildtiere -- vor allem Rehkitze -- während dem Mähen von landwirtschaftlich genutzten Wiesen. Mit herkömmlichen Methoden ist es unter vertretbarem Aufwand bisher nicht gelungen, die Zahl der Mähopfer auf ein erträgliches Maß zu reduzieren. Mit der Entwicklung des in dieser Arbeit beschriebenen "Fliegenden Wildretters" könnte sich das in Zukunft ändern. Mit Hilfe einer Wärmebildkamera aus der Vogelperspektive lässt sich ein warmes Tier, wie ein Rehkitz, wesentlich leichter aufspüren, als mit herkömmlichen Methoden. Auslegung und Aufbau des Systems orientieren sich speziell an dem Aspekt, wie eine möglichst hohe Flächenleistung erreicht werden kann, ohne dabei Tiere zu übersehen. Drei Faktoren sind besonders wichtig, um dieses Ziel zu erreichen: Eine hohe Geschwindigkeit des gesamten Suchprozesses, eine zuverlässige Detektion und eine präzise Lokalisierung der Tiere. Durch Automatisierung lassen sich viele Teilaspekte dieser Aufgabe beschleunigen. Deshalb werden im Rahmen dieser Arbeit verschiedene Methoden entwickelt und validiert, unter anderem zur Flugplanung, Flugsteuerung, Bilddaten-Auswertung, Objekt-Detektion und Georeferenzierung. Die Kenntnis der Rehkitz-Merkmale und der Einflussgrößen bei der Thermalbilderfassung helfen, die Qualität der Detektion zu erhöhen, weshalb sie in dieser Arbeit besondere Berücksichtigung finden. Auch die Präzision der Lokalisierung lässt sich durch Kenntnis der Einflussgrößen auf die Positions- und Lagemessung des UAVs erhöhen. Anhand von umfangreichen Messkampagnen wird die Funktion und Qualität des Systems unter realen Bedingungen belegt.
8

Neue Ansätze zur linearen und nichtlinearen optischen Charakterisierung molekularer und nanokristalliner Ensembles: Zusammenhang zwischen makroskopischer Funktion und Struktur auf mesoskopischer Längenskala technologisch relevanter Materialien

Bock, Sergej 29 October 2020 (has links)
Durch neue Ansätze zur Charakterisierung molekularer und nanokristalliner Materialien spiegelt die vorliegende Arbeit die Synergie von linearer Optik über Ultrakurzzeitphysik zur nichtlinearen Optik wider. Angefangen mit der linearen diffusen Reflektanz (Remission) zur Bestimmung des spektralen Reflexionsvermögens von Pulverpartikeln, erlaubt die hier gezeigte alternative Herangehensweise (s. Kapitel 2) nicht nur ein vereinfachtes Messen der Remission zur Analyse von Materialzusammensetzungen, Verunreinigungen und Co-Dotierungen, sondern eröffnet zudem über Monte-Carlo Simulationen, kombiniert mit der Kubelka-Munk Theorie und der Mie Streuung, auch den Zugang zu dem ansonsten experimentell unzugänglichen Absorptionskoeffizienten von nicht-transluzenten Proben. Die präsentierten Mess- und Simulationsergebnisse an Pulvertabletten aus Rutil-Titandioxid (TiO2) und Cer-dotierten Yttrium Aluminium Granat (YAG:Ce3+) sind mit den bisherigen in der Literatur vorliegenden Ergebnissen konsistent oder zumindest vergleichbar. Auch lassen sich nach Modifikation der Kubelka-Munk Funktion die Bandkanten-Energien Eg der mikro- und nanokristallinen Pulverproben mittels so genannter Tauc Plots verifizieren. Basierend auf einer starken Temperatur- und Konzentrationsabhängigkeit lassen sich die Emissionsspektren der oben genannten YAG:Ce3+-Leuchtstoffe aufgrund von Überlappung oder Verschiebung der energetischen Grundniveaus 2F5/2 und 2F7/2 variieren (s. Kapitel 3). Während sich bei Tieftemperaturen um 19K die doppelbandige Natur der Leuchtstoffe zeigt, verbreitern sich die Emissionsbanden bei Raumtemperatur zu einer Einzelbande, womit eine spektral sehr breite Fluoreszenz einhergeht. Mathematische Entfaltungen dieser Spektren zeigen jeweils den prozentualen Beitrag der Relaxation aus dem untersten angeregten Zustand 5d1 in einen der beiden Grundzustände 2F5/2 und 2F7/2 und ebenso den Einfluss der Temperatur und Cer-Konzentration. Tatsächlich führen die experimentellen Ergebnisse der vorliegenden Arbeit zu der Erkenntnis, dass eine der vier untersuchten YAG:Ce3+-Proben eine erhöhte Cer-Konzentration aufweisen muss. Anders als bei den schwach konzentrierten YAG:Ce3+-Proben ist die spektrale Doppelbande des stark konzentrierten Leuchtstoffs selbst bei 19K nur zu erahnen, während der Beitrag des 5d1 --> 2F7/2 Übergangs auf die Gesamtfluoreszenz retrograd zum 5d1 --> 2F5/2 Übergang mit steigender Temperatur sogar abnimmt. Im direkten Anschluss an die spektrale Vermessung der Proben folgen zeitaufgelöste Lebensdauermessungen zur Bestimmung der Nachleuchtdauern dieser Leuchtstoffe mittels Pikosekunden-Laserpulsen (ps-Pulse) (s. Kapitel 3.3). Auch hier stellen sich Unterschiede zwischen den genannten YAG:Ce3+-Proben heraus und untermauern erneut die Annahme unterschiedlicher Cer-Konzentrationen: Während die Nachleuchtdauer der niedrig konzentrierten Leuchtstoffe von der Temperatur nahezu unberührt bleibt, zeigt sich eine bemerkenswerte Temperaturabhängigkeit des 5d1 --> 2F5/2 Übergangs beim YAG:Ce3+ mit hohem Cer-Gehalt. Auf Basis sämtlicher experimenteller Erkenntnisse und einer ausgiebigen Literaturrecherche kann schließlich eine Fremddotierung der Leuchtstoff-Proben nahezu vollständig ausgeschlossen und ein Energieschema für die vorliegenden YAG:Ce3+-Leuchtstoffe mit den wichtigsten optischen Übergängen erstellt werden. In Hinblick auf potentielle holographische Applikationen wie der optischen Datenspeicherung oder Echtzeit-Holographie erweisen sich die in Polydimethylsiloxan eingebetteten photoschaltbaren Ruthenium-Sulfoxide aufgrund der äußerst geringen Beugungseffizienz von < 10−2 als nicht pragmatisch für die Praxis (s. Kapitel 4). Vergleichbare photoschaltbare Materialien, wie zum Beispiel Natriumnitrosylprussiat, erreichen hingegen Effizienzen von bis zu 100 %. Dennoch zeichnen sich die in Publikation 2 (s. Anhang A.2) vorgestellten Resultate an OSO-PDMS durch ihre äußerst hohe Qualität aus. Sowohl die dynamische Hologramm-Entstehung als auch die Rocking-Kurve folgen den physikalischen Theorien einwandfrei und lassen sich mit den bekannten mathematischen Anpassungen exakt wiedergeben, womit sich entsprechend intrinsische Größen ableiten lassen. Zudem beeindruckt der experimentelle Aufbau mit der präzisen Messung der oftmals nicht detektierbaren Nebenmaxima der gezeigten Rocking-Kurve sowie des Winkel-Multiplexings. Bemerkenswert ist außerdem aus physikalischer Sicht der immense Unterschied zwischen cw- und fs-Holographie. Hier deuten sich nichtlineare Effekte an, die zu der Erkenntnis führen, dass sich die bekannten Theorien mit cw-Lasern nicht ohne Weiteres deckungsgleich auf die Holographie mit ultrakurzen Laserpulsen anwenden lassen. Ein möglicher Erklärungsansatz ist in Kapitel 4.1 beschrieben. Einen praktischen Zweck zur Nutzung nichtlinearer Effekte erfüllt die vorgestellte Messmethode zur Unterscheidung polarer und nicht-polarer Materialien mittels intensiver fs- Puls-Anregung von sogenannten harmonischen (Upconversion-)Nanopartikeln (s. Kapitel 5). Denn anders als die zu Beginn behandelten Leuchtstoffe, weisen die harmonischen Nanopartikel eine starke Anti-Stokes Verschiebung durch Frequenzkonversion zweier oder dreier Photonen zu einem energiereicheren (kurzwelligen) Photon auf. Diese als SHG (second harmonic generation) und THG (third harmonic generation) bekannte Lichtemission wird spektral vermessen, wobei die zu Beginn der Arbeit beschriebenen linearen diffusen Reflektanzmessungen den zu erwartenden Spektralbereich ohne nennenswerte Absorption eingrenzen. Die eigens definierte Gütezahl fR, bestehend aus dem integrierten SHG- und THG-Emissionsspektrum einer Probe, kategorisiert dann die polare (fR > 1) oder nicht-polare (fR << 1) Natur des Materials.
9

Ultrafast Photon Management: The Power of Harmonic Nanocrystals in Nonlinear Spectroscopy and Beyond

Kijatkin, Christian 01 April 2019 (has links)
The present work broaches the physics of light-matter interaction, chiefly using nonlinear optical spectroscopy in a newly developed framework termed as Photon Management Concept. This way, existing fragments dealing with specific properties of harmonic and upconversion nanoparticles (HNPs/UCNPs) are consolidated into a full and coherent picture with the primary goal of understanding the underlying physical processes and their impact on the application side, especially in terms of imaging techniques, via suitable experimental and numerical studies. Contemporary optical setups involving contrast-enhancing agents are frequently limited in their excitation and detection configurations owing to a specialization to a select number of markers. As a result, the bandwidth of experimental methods and specimens that may be investigated is severely restricted in a large number of state-of-the-art setups. Here, an alternative approach involving HNPs and UCNPs, respectively, is presented providing an overview from their synthesis to optical characterization and to potential fields of application. Based on their inherent flexibility based on their nonlinear optical response, especially in terms of wavelength and intensity tunability, the PMC alleviates prevalent limitations by dynamically adapting the setup to a sample instead of the preliminary culling to a reduced number of eligible specimens that must not change their optical properties significantly during investigation. The use of HNPs supersedes such concerns due to their nearly instantaneously generated, strongly anti-Stokes shifted, coherent emission capable of producing radiation throughout the visible spectral range, including infrared and ultraviolet wavelengths. This way, HNPs transcend the traditional field of imaging and introduces potential applications in optomanipulation or holographic techniques. Thorough (nonlinear) optical characterization of UCNPs and alkali niobate HNP ensembles is performed to assess the fundamental physical mechanisms interwoven with numerical studies leading to their wide-ranging applicability. Final remarks show that HNPs are ideal candidates for realization of the PMC and yet hold an even further potential beyond current prospects.

Page generated in 0.4227 seconds