• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 308
  • 71
  • 12
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 402
  • 273
  • 171
  • 158
  • 156
  • 156
  • 107
  • 76
  • 50
  • 45
  • 43
  • 41
  • 41
  • 41
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Extended Jaynes-Cummings Models In Cavity Qed

Larson, Jonas January 2005 (has links)
Due to the improvement within cavity quantum electrodynamics experiments during the last decades, what was former seen as 'toy models' are today realized in laboratories. A controlled isolated coherent evolution of one or a few atoms coupled to a single mode inside a cavity is achievable. Such systems are well suited for studying purely quantum mechanical effects, and also for performing quantum gates, necessary for quantum computing. The Jaynes-Cummings model has served as a theoretical description of the interaction. However, as the experimental techniques are improved, for example, atom cooling, the use of multi-level atoms or multi-modes and driving of atoms or elds by external lasers, extensions of the original Jaynes-Cummings model are needed. In this thesis we study some of these extended models, and in particular multi-level models, time-dependent models and quantized motion models. Both analytical and numerical analysis are considered. The two-level structure of the Jaynes-Cummings model leads to applications of known solvable time-dependent two-level Schrödinger equations. In other cases, di erent forms of adiabatic approximate solutions are used, and with the analytically solvable models, the amplitudes of non-adiabatic contributions may be estimated. For higher dimensional systems, STIRAP and multi-STIRAP methods are applied. It is shown how the time-dependent models may be used for preparation of various kinds of non-classical states, and also to generate universal sets of quantum gates, both on atomic and eld qubits. When the atoms are cooled to very low temperatures, their velocities must be treated quantum mechanically, and we have studied the dynamics of such cases for di erent coupling shapes. Again numerical and analytical approaches have been used and compared, wave-packet propagations of the atom, approaching and traversing the cavity, have been performed. For periodic couplings, standing wave cavity modes, the dynamics has been described by e ective parameters; group velocity or atomic index of refraction and effective mass. Tunneling resonances for ultra cold atoms have been exhibited in the STIRAP models for certain initial conditions. / QC 20101027
42

Extended Jaynes-Cummings models in cavity QED

Larson, Jonas January 2005 (has links)
<p>Due to the improvement within cavity quantum electrodynamics experiments during the last decades, what was former seen as 'toy models' are today realized in laboratories. A controlled isolated coherent evolution of one or a few atoms coupled to a single mode inside a cavity is achievable. Such systems are well suited for studying purely quantum mechanical effects, and also for performing quantum gates, necessary for quantum computing. The Jaynes-Cummings model has served as a theoretical description of the interaction. However, as the experimental techniques are improved, for example, atom cooling, the use of multi-level atoms or multi-modes and driving of atoms or elds by external lasers, extensions of the original Jaynes-Cummings model are needed. In this thesis we study some of these extended models, and in particular multi-level models, time-dependent models and quantized motion models. Both analytical and numerical analysis are considered. The two-level structure of the Jaynes-Cummings model leads to applications of known solvable time-dependent two-level Schrödinger equations. In other cases, di erent forms of adiabatic approximate solutions are used, and with the analytically solvable models, the amplitudes of non-adiabatic contributions may be estimated. For higher dimensional systems, STIRAP and multi-STIRAP methods are applied. It is shown how the time-dependent models may be used for preparation of various kinds of non-classical states, and also to generate universal sets of quantum gates, both on atomic and eld qubits. When the atoms are cooled to very low temperatures, their velocities must be treated quantum mechanically, and we have studied the dynamics of such cases for di erent coupling shapes. Again numerical and analytical approaches have been used and compared, wave-packet propagations of the atom, approaching and traversing the cavity, have been performed. For periodic couplings, standing wave cavity modes, the dynamics has been described by e ective parameters; group velocity or atomic index of refraction and effective mass. Tunneling resonances for ultra cold atoms have been exhibited in the STIRAP models for certain initial conditions.</p>
43

Optimization of an adaptive optics system and its application to high-resolution imaging spectroscopy of T Tauri

Kasper, Markus Erdmann. January 2000 (has links)
Heidelberg, Univ., Diss., 2000.
44

Binuclear phthalocyanines synthesis, characterisation and optical limiting properties /

Calvete, Mário, January 2004 (has links)
Tübingen, Univ., Diss., 2004.
45

Nichtlinear-optische Eigenschaften von mono-, bis- und tris-donor-substituierten Triazinen und Tricyanobenzolen

Matschiner, Ralf. Unknown Date (has links)
Univ, Diss., 2000--Kaiserslautern.
46

Early stages of massive star formation at high spatial resolution

Puga Antolín, Elena. Unknown Date (has links) (PDF)
University, Diss., 2004--Heidelberg.
47

Correlative live and fixed cell superresolution microscopy / Korrelative hochauflösende Mikroskopie an lebenden und fixierten Zellen

Kurz, Andreas January 2020 (has links) (PDF)
Over the last decade life sciences have made an enormous leap forward. The development of complex analytical instruments, in particular in fluorescence microscopy, has played a decisive role in this. Scientist can now rely on a wide range of imaging techniques that offer different advantages in terms of optical resolution, recording speed or living cell compatibility. With the help of these modern microscopy techniques, multi-protein complexes can be resolved, membrane receptors can be counted, cellular pathways analysed or the internalisation of receptors can be tracked. However, there is currently no universal technique for comprehensive experiment execution that includes dynamic process capture and super resolution imaging on the same target object. In this work, I built a microscope that combines two complementary imaging techniques and enables correlative experiments in living and fixed cells. With an image scanning based laser spot confocal microscope, fast dynamics in several colors with low photodamage of the cells can be recorded. This novel system also has an improved resolution of 170 nm and was thoroughly characterized in this work. The complementary technique is based on single molecule localization microscopy, which can achieve a structural resolution down to 20-30 nm. Furthermore I implemented a microfluidic pump that allows direct interaction with the sample placed on the microscope. Numerous processes such as living cell staining, living cell fixation, immunostaining and buffer exchange can be observed and performed directly on the same cell. Thus, dynamic processes of a cell can be frozen and the structures of interest can be stained and analysed with high-resolution microscopy. Furthermore, I have equipped the detection path of the single molecule technique with an adaptive optical element. With the help of a deformable mirror, imaging functions can be shaped and information on the 3D position of the individual molecules can be extracted. / Im letzten Jahrzehnt hat der Bereich der Lebenswissenschaften einen enormen Sprung nach vorne gemacht. Maßgeblich dafür waren die Entwicklung von komplexen Analysegeräten insbesondere in der Fluoreszenz Mikroskopie. Die Anwender können nun auf eine Vielzahl von Bildgebungstechniken zurückgreifen die unterschiedliche Vorzüge hinsichtlich optischer Auflösung, Aufnahmegeschwindigkeit oder Lebend Zell Kompatibilität bieten. Mithilfe dieser modernen Mikroskopietechniken lassen sich beispielsweise Multiproteinkomplexe auflösen, Membranrezeptoren zählen, zelluläre Signalwege analysieren oder die Internalisierung von Rezeptoren verfolgen. Für eine umfassende Experimentdurchführung, die Erfassung dynamischer Prozesse sowie superhochauflösende Bildgebung an ein und demselben Zielobjekt beinhalten, gibt es derzeit keine einheitliche Technik. In dieser Arbeit habe ich ein Mikroskop aufgebaut, das zwei komplementäre Bildgebungstechniken vereint und korrelative Experimente von lebend zu fixierten Zellen ermöglicht. Mit einem Image Scanning basierten Konfokal Mikroskop können schnelle Dynamiken in mehreren Farben mit geringer Photoschädigung der Zellen aufgenommen werden. Dieses neuartige System weist zudem eine Auflösungsverbesserung von 170 nm auf und wurde im Rahmen der Arbeit ausführlich charakterisiert. Die komplementäre Technik basiert auf der Einzel-Molekül Lokalisations Mikroskopie, mit der sich eine strukturelle Auflösung von bis zu 20 nm erreichen lässt. Desweiteren habe ich eine Mikrofluidpumpe implementiert, die eine direkte Interaktion mit der auf dem Mikroskop platzierten Probe erlaubt. Zahlreiche Prozesse wie Lebend-Zell Färbung, Lebend-Zell Fixierung, Immuno-Färbung und Puffertausch können damit direkt an der gleichen Zelle beobachtet und durchgeführt werden. So können dynamische Prozesse einer Zelle sozusagen eingefroren werden und die Strukturen von Interesse gefärbt und mit höchstauflösender Mikroskopie analysiert werden. Desweiteren habe ich den Detektionspfad der Einzel-Molekül Technik mit einem adaptiven optischen Element ausgestattet. Mithilfe eines deformierbaren Spiegels lässt sich so Abbildungsfunktion formen und Information zur 3D Position der einzelnen Moleküle gewinnen.
48

Point-spread function engineering for single-molecule localization microscopy in brain slices / Modulation der Punktspreizfunktion für Einzelmolekül-Lokalisationsmikroskopie in Hirnschnitten

Groß, Lennart January 2022 (has links) (PDF)
Single-molecule localization microscopy (SMLM) is the method of choice to study biological specimens on a nanoscale level. Advantages of SMLM imply its superior specificity due to targeted molecular fluorescence labeling and its enhanced tissue preservation compared to electron microscopy, while reaching similar resolution. To reveal the molecular organization of protein structures in brain tissue, SMLM moves to the forefront: Instead of investigating brain slices with a thickness of a few µm, measurements of intact neuronal assemblies (up to 100 µm in each dimension) are required. As proteins are distributed in the whole brain volume and can move along synapses in all directions, this method is promising in revealing arrangements of neuronal protein markers. However, diffraction-limited imaging still required for the localization of the fluorophores is prevented by sample-induced distortion of emission pattern due to optical aberrations in tissue slices from non-superficial planes. In particular, the sample causes wavefront dephasing, which can be described as a summation of Zernike polynomials. To recover an optimal point spread function (PSF), active shaping can be performed by the use of adaptive optics. The aim of this thesis is to establish a setup using a deformable mirror and a wavefront sensor to actively shape the PSF to correct the wavefront phases in a super-resolution microscope setup. Therefore, fluorescence-labeled proteins expressed in different anatomical regions in brain tissue will be used as experiment specimen. Resolution independent imaging depth in slices reaching tens of micrometers is aimed. / Einzelmolekül-Lokalisationsmikroskopie ist die Methode der Wahl zur Untersuchung biologische Proben im Bereich von Nanometern. Vorteile von Einzelmolekül-Lokalisationsmikroskopie sind vor allem ihre hohe Spezifität von molekularen Farbstoffbindungen sowie die erreichte hohe Auflösung, die vergleichbar ist mit der elektronenmikroskopischen Auflösung, wobei in der Einzelmolekül-Lokalisationsmikroskopie keine Konservierung der Probe vorgenommen werden muss. Vor allem in der Untersuchung der molekularen Organisation von Proteinstrukturen konnte sich die Einzelmolekül-Lokalisationsmikroskopie bewähren. Die Verteilung von Proteinen im gesamten Gehirn, sowie ihre Eigenschaft, sich entlang neuronaler Strukturen zu bewegen, kann mithilfe der Einzelmolekül-Lokalisationsmikroskopie untersucht werden und zu einem besseren Verständnis neuronaler Prozesse beitragen. Proben induzieren optische Aberrationen: Diese Dephasierungen der Wellenfront, welche als Summe von Zernike-Polynomen beschrieben werden kann, verhindert das Erreichen der Auflösungsgrenze. Zur Wiederherstellung einer optimalen Punktspreizfunktion kann die Wellenfront mittels adaptiver Optik aktiv geformt werden. Ziel dieser Arbeit ist der Aufbau eines Einzelmolekül-Lokalisationsmikroskopes mit integrierter adaptiver Optik, bestehend aus einem deformierbaren Spiegel und einem Wellenfrontsensor, um aktiv die Wellenfront zu formen und die Dephasierung zu korrigieren. Zu diesem Zweck werden fluoreszenzmarkierte Proteine, welche in verschiedenen Hirnregionen exprimiert werden, als Proben herangezogen. Optimalerweise könnte so in verschiedenen Tiefen eine ähnliche Auflösung wie bei einer oberflächlichen Messung erreicht werden. Um die Möglichkeiten des Setups zu evaluieren, welches im Verlauf dieser Arbeit aufgebaut wurde, wurden artifizielle Proben erstellt, indem eine Einzelzellschicht hippocampaler Neuronen der Maus, in welchen α-tubulin mit Alexa Fluor 647 angefärbt ist, auf einem 100 µm Maushirnschnitt plaziert wurden. Da letzterer ein hochgradig diffuses Medium zwischen dem Objektiv und den Fluorophoren darstellt, induziert es verschiedene optische Aberrationen, vor allem Sphärische Aberration und Astigmatismus. Indem die Wellenfront und die Punktspreizfunktion von 4 µm Fluosphere Beads, welche eine maximale Emission bei 505 nm haben, und 0.1 µm Tetraspeck Beads, welche eine maximale Emission bei 505 nm zeigen, aufgenommen wurde, konnten die Aberrationen von 521 nm zu 116 nm Quadratmittel des Wellenfrontfehlers reduziert werden. Weiterhin konnten mithilfe der adaptiven Optik Bruchpilot-Anhäufungen in einem Hirnschnitt der Honigbiene in den Calyx der Pilzkörper in einer Messtiefe von 80 µm sichtbar gemacht werden, welche im unkorrigierten Bild nicht sichtbar waren, indem das Quadratmittel des Wellenfrontfehlers von 587 nm auf 196 nm reduziert wird. Insgesamt zeigt die Reduktion des Quadratmittels des Wellenfrontfehlers eine erfolgreiche Korrektur an, aber ist weit entfernt von einer Mikroskopiertechnik, die eine gewinnbringende Forschung in lebenswissenschaftlichen Bereichen garantiert.
49

Near-infrared optical frequency comb Vernier spectroscopy in air and in a flame

Fakhri, Maryam January 2017 (has links)
A Vernier spectrometer is built with a near-infrared mode-locked Er:doped fiber laser, a Fabry-Perot cavity with finesse of 1000, a diffraction grating and a photo detector. The optical cavity provides high sensitivity in absorption detection by enhancing the interaction length of the light with molecular species contained in the cavity. Coupling an optical frequency comb to the cavity provided a broadband spectral bandwidth with high precision to measure the absorption of several molecular species simultaneously. Also, by using the optical cavity as a filter, transmission of some bunch comb lines was achieved. This comb filtering together with a simple grating and a photodiode formed the Vernier detection technique to provide very fast measurements while it kept the setup very simple and compact. The system allows to detect carbon dioxide in the air and water vapor and OH radicals in the flame in a spectrum spanning from 1550 nm to 1590 nm, approximately. The retrieved spectrum has a resolution of 9.3 GHz being acquired in 0.05 s.
50

Counteraction of urea-induced protein denaturation by Trimethylamine N-oxide

VANTARAKI, CHRISTINA January 2019 (has links)
A common consequence of protein denaturation is the loss of biological activity. Natural osmolytes such as Trimethylamine N-oxide (TMAO) contribute to protein folding, whereas other osmolytes such as urea act as an agent in the denaturation of proteins. Many studies have shown that denaturation of proteins could occur for certain concentrations of urea, however, this effect could be prevented with the presence of Trimethylamine N-oxide (TMAO) molecules. The aim of the present study is to find out the mechanism of TMAO as a protein stabilizer against urea. Firstly, Molecular Dynamics simulations were carried out for 1, 8, 27 and 64 TMAO molecules. The time-average location of the TMAO molecules during the simulation was studied by the partial density. These simulations examine if TMAO is amphiphilic molecule, i.e contains both hydrophobic and hydrophilic parts. However, these results might not be representative due to bad statistics. Secondly, an experiment ran at BESSY II at Helmholtz-Zentrum Berlin using X-ray Photoelectron Spectroscopy in liquids. In this experiment, Lauryldimethylamine oxide(LDAO) was used instead of Trimethylamine N-oxide (TMAO) due to some practical reasons. The behaviour of urea and LDAO molecule was studied when these molecules were in different and same solutions. The purpose of this experiment is to find out the mechanism of LDAO against urea. Finally, LDAO interacts with urea and a possible mechanism between them is suggested. A common consequence of protein denaturation is the loss of biological activity. Natural osmolytes such as Trimethylamine N-oxide (TMAO) contribute to protein folding, whereas other osmolytes such as urea act as an agent in the denaturation of proteins. Many studies have shown that denaturation of proteins could occur for certain concentrations of urea, however, this effect could be prevented with the presence of the Trimethylamine N-oxide (TMAO) molecules. The aim of the present study is to find out the mechanism of TMAO as a protein stabilizer against urea. Firstly, Molecular Dynamics simulations were carried out for 1, 8, 27 and 64 TMAO molecules. The time-average location of TMAO molecules during the simulation was studied by the partial density. These simulations examine if TMAO is amphiphilic molecule, i.e contains both hydrophobic and hydrophilic parts. However, these results might not be representative due to bad statistics. Secondly, an experiment ran at BESSY II at Helmholtz-Zentrum Berlin using X-ray Photoelectron Spectroscopy in liquids. In this experiment, Lauryldimethylamine oxide (LDAO) was used instead of Trimethylamine N-oxide (TMAO) due to some practical reasons. The behaviour of urea and LDAO molecule was studied when these molecules were in different and same solutions. The purpose of this experiment is to find out the mechanism of LDAO against urea. Finally, LDAO interacts with urea and a possible mechanism between them is suggested. / <p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p>

Page generated in 0.0218 seconds