• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling approaches for optimal liquidation under a limit-order book structure

Blair, James January 2016 (has links)
This thesis introduces a selection of models for optimal execution of financial assets at the tactical level. As opposed to optimal scheduling, which defines a trading schedule for the trader, this thesis investigates how the trader should interact with the order book. If a trader is aggressive he will execute his order using market orders, which will negatively feedback on his execution price through market impact. Alternatively, the models we focus on consider a passive trader who places limit orders into the limit-order book and waits for these orders to be filled by market orders from other traders. We assume these models do not exhibit market impact. However, given we await market orders from other participants to fill our limit orders a new risk is borne: execution risk. We begin with an extension of Guéant et al. (2012b) who through the use of an exponential utility, standard Brownian motion, and an absolute decay parameter were able to cleverly build symmetry into their model which significantly reduced the complexity. Our model consists of geometric Brownian motion (and mean-reverting processes) for the asset price, a proportional control parameter (the additional amount we ask for the asset), and a proportional decay parameter, implying that the symmetry found in Guéant et al. (2012b) no longer exists. This novel combination results in asset-dependent trading strategies, which to our knowledge is a unique concept in this framework of literature. Detailed asymptotic analyses, coupled with advanced numerical techniques (informing the asymptotics) are exploited to extract the relevant dynamics, before looking at further extensions using similar methods. We examine our above mentioned framework, as well as that of Guéant et al. (2012), for a trader who has a basket of correlated assets to liquidate. This leads to a higher-dimensional model which increases the complexity of both numerically solving the problem and asymptotically examining it. The solutions we present are of interest, and comparable with Markowitz portfolio theory. We return to our framework of a single underlying and consider four extensions: a stochastic volatility model which results in an added dimension to the problem, a constrained optimisation problem in which the control has an explicit lower bound, changing the exponential intensity to a power intensity which results in a reformulation as a singular stochastic control problem, and allowing the trader to trade using both market orders and limit orders resulting in a free-boundary problem. We complete the study with an empirical analysis using limit-order book data which contains multiple levels of the book. This involves a novel calibration of the intensity functions which represent the limit-order book, before backtesting and analysing the performance of the strategies.
2

Effets de rétroaction en finance : applications à l'exécution optimaleet aux modèles de volatilité / Feedback effects in finance : applications to optimal execution and volatility modeling

Blanc, Pierre 09 October 2015 (has links)
Dans cette thèse, nous considérons deux types d'application des effets de rétroaction en finance. Ces effets entrent en jeu quand des participants de marché exécutent des séquences de transactions ou prennent part à des réactions en chaîne, ce qui engendre des pics d'activité. La première partie présente un modèle d'exécution optimale dynamique en présence d'un flux stochastique et exogène d'ordres de marché. Nous partons du modèle de référence d'Obizheva et Wang, qui définit un cadre d'exécution optimale avec un impact de prix mixte. Nous y ajoutons un flux d'ordres modélisé à l'aide de processus de Hawkes, qui sont des processus à sauts présentant une propriété d'auto-excitation. A l'aide de la théorie du contrôle stochastique, nous déterminons la stratégie optimale de manière analytique. Puis nous déterminons les conditions d'existence de Stratégies de Manipulation de Prix, telles qu'introduites par Huberman et Stanzl. Ces stratégies peuvent être exclues si l'auto-excitation du flux d'ordres se compense exactement avec la résilience du prix. Dans un deuxième temps, nous proposons une méthode de calibration du modèle, que nous appliquons sur des données financières à haute fréquence issues de cours d'actions du CAC40. Sur ces données, nous trouvons que le modèle explique une partie non-négligeable de la variance des prix. Une évaluation de la stratégie optimale en backtest montre que celle-ci est profitable en moyenne, mais que des coûts de transaction réalistes suffisent à empêcher les manipulations de prix. Ensuite, dans la deuxième partie de la thèse, nous nous intéressons à la modélisation de la volatilité intra-journalière. Dans la littérature, la plupart des modèles de volatilité rétroactive se concentrent sur l'échelle de temps journalière, c'est-à-dire aux variations de prix d'un jour sur l'autre. L'objectif est ici d'étendre ce type d'approche à des échelles de temps plus courtes. Nous présentons d'abord un modèle de type ARCH ayant la particularité de prendre en compte séparément les contributions des rendements passés intra-journaliers et nocturnes. Une méthode de calibration de ce modèle est étudiée, ainsi qu'une interprétation qualitative des résultats sur des rendements d'actions américaines et européennes. Dans le chapitre suivant, nous réduisons encore l'échelle de temps considérée. Nous étudions un modèle de volatilité à haute fréquence, dont l'idée est de généraliser le cadre des processus Hawkes pour mieux reproduire certaines caractéristiques empiriques des marchés. Notamment, en introduisant des effets de rétroaction quadratiques inspirés du modèle à temps discret QARCH nous obtenons une distribution en loi puissance pour la volatilité ainsi que de l'asymétrie temporelle / In this thesis we study feedback effects in finance and we focus on two of their applications. These effects stem from the fact that traders split meta-orders sequentially, and also from feedback loops. Therefore, one can observe clusters of activity and periods of relative calm. The first part introduces an dynamic optimal execution framework with an exogenous stochastic flow of market orders. Our starting point is the well-known model of Obizheva and Wang which defines an execution framework with both permanent and transient price impacts. We modify the price model by adding an order flow based on Hawkes processes, which are self-exciting jump processes. The theory of stochastic control allows us to derive the optimal strategy as a closed formula. Also, we discuss the existence of Price Manipulations Strategies in the sense of Huberman and Stanzl which can be excluded from the model if the self-exciting property of the order flow exactly compensates the resilience of the price. The next chapter studies a calibration protocol for the model, which we apply to tick-by-tick data from CAC40 stocks. On this dataset, the model is found to explain a significant part of the variance of prices. We then evaluate the optimal strategy with a series of backtests, which show that it is profitable on average, although realistic transaction costs can prevent manipulation strategies. In the second part of the thesis, we turn to intra-day volatility modeling. Previous works from the volatility feedback literature mainly focus on the daily time scale, i.e. on close-to-close returns. Our goal is to use a similar approach on shorter time scales. We first present an ARCH-type model which accounts for the contributions of past intra-day and overnight returns separately. A calibration method for the model is considered, that we use on US and European stocks, and we provide some qualitative insights on the results. The last chapter of the thesis is dedicated to a high-frequency volatility model. We introduce a continuous-time analogue of the QARCH framework, which is also a generalization of Hawkes processes. This new model reproduces several important stylized facts, in particular it generates a time-asymmetric and fat-tailed volatility process
3

Modélisation et analyse statistique de la formation des prix à travers les échelles, Market impact / Statistical modelisation and analisys of the price formation through the scales

Iuga, Relu Adrian 11 December 2014 (has links)
Le développement des marchés électroniques organisés induit une pression constante sur la recherche académique en finance. L'impact sur le prix d'une transaction boursière portant sur une grande quantité d'actions sur une période courte est un sujet central. Contrôler et surveiller l'impact sur le prix est d'un grand intérêt pour les praticiens, sa modélisation est ainsi devenue un point central de la recherche quantitative de la finance. Historiquement, le calcul stochastique s'est progressivement imposé en finance, sous l'hypothèse implicite que les prix des actifs satisfont à des dynamiques diffusives. Mais ces hypothèses ne tiennent pas au niveau de la ``formation des prix'', c'est-à-dire lorsque l'on se place dans les échelles fines des participants de marché. Des nouvelles techniques mathématiques issues de la statistique des processus ponctuels s'imposent donc progressivement. Les observables (prix traité, prix milieu) apparaissent comme des événements se réalisant sur un réseau discret, le carnet d'ordre, et ceci à des échelles de temps très courtes (quelques dizaines de millisecondes). L'approche des prix vus comme des diffusions browniennes satisfaisant à des conditions d'équilibre devient plutôt une description macroscopique de phénomènes complexes issus de la formation des prix. Dans un premier chapitre, nous passons en revue les propriétés des marchés électroniques. Nous rappelons la limite des modèles diffusifs et introduisons les processus de Hawkes. En particulier, nous faisons un compte rendu de la recherche concernant le maket impact et nous présentons les avancées de cette thèse. Dans une seconde partie, nous introduisons un nouveau modèle d'impact à temps continu et espace discret en utilisant les processus de Hawkes. Nous montrons que ce modèle tient compte de la microstructure des marchés et est capable de reproduire des résultats empiriques récents comme la concavité de l'impact temporaire. Dans le troisième chapitre, nous étudions l'impact d'un grand volume d'action sur le processus de formation des prix à l'échelle journalière et à une plus grande échelle (plusieurs jours après l'exécution). Par ailleurs, nous utilisons notre modèle pour mettre en avant des nouveaux faits stylisés découverts dans notre base de données. Dans une quatrième partie, nous nous intéressons à une méthode non-paramétrique d'estimation pour un processus de Hawkes unidimensionnel. Cette méthode repose sur le lien entre la fonction d'auto-covariance et le noyau du processus de Hawkes. En particulier, nous étudions les performances de cet estimateur dans le sens de l'erreur quadratique sur les espaces de Sobolev et sur une certaine classe contenant des fonctions « très » lisses / The development of organized electronic markets induces a constant pressure on academic research in finance. A central issue is the market impact, i.e. the impact on the price of a transaction involving a large amount of shares over a short period of time. Monitoring and controlling the market impact is of great interest for practitioners; its modeling and has thus become a central point of quantitative finance research. Historically, stochastic calculus gradually imposed in finance, under the assumption that the price satisfies a diffusive dynamic. But this assumption is not appropriate at the level of ”price formation”, i.e. when looking at the fine scales of market participants, and new mathematical techniques are needed as the point processes. The price (last trade, mid-price) appears as events on a discrete network, the order book, at very short time scales (milliseconds). The Brownien motion becomes rather a macroscopic description of the complex price formation process. In the first chapter, we review the properties of electronic markets. We recall the limit of diffusive models and introduce the Hawkes processes. In particular, we make a review of the market impact research and present this thesis advanced. In the second part, we introduce a new model for market impact model at continuous time and living on a discrete space using process Hawkes. We show that this model that takes into account the market microstructure and it is able to reproduce recent empirical results as the concavity of the temporary impact. In the third chapter, we investigate the impact of large orders on the price formation process at intraday scale and at a larger scale (several days after the meta-order execution). Besides, we use our model to discuss stylized facts discovered in the database. In the fourth part, we focus on the non-parametric estimation for univariate Hawkes processes. Our method relies on the link between the auto-covariance function and the kernel process. In particular, we study the performance of the estimator in squared error loss over Sobolev spaces and over a certain class containing "very'' smooth functions
4

Effets de rétroaction en finance : applications à l'exécution optimaleet aux modèles de volatilité / Feedback effects in finance : applications to optimal execution and volatility modeling

Blanc, Pierre 09 October 2015 (has links)
Dans cette thèse, nous considérons deux types d'application des effets de rétroaction en finance. Ces effets entrent en jeu quand des participants de marché exécutent des séquences de transactions ou prennent part à des réactions en chaîne, ce qui engendre des pics d'activité. La première partie présente un modèle d'exécution optimale dynamique en présence d'un flux stochastique et exogène d'ordres de marché. Nous partons du modèle de référence d'Obizheva et Wang, qui définit un cadre d'exécution optimale avec un impact de prix mixte. Nous y ajoutons un flux d'ordres modélisé à l'aide de processus de Hawkes, qui sont des processus à sauts présentant une propriété d'auto-excitation. A l'aide de la théorie du contrôle stochastique, nous déterminons la stratégie optimale de manière analytique. Puis nous déterminons les conditions d'existence de Stratégies de Manipulation de Prix, telles qu'introduites par Huberman et Stanzl. Ces stratégies peuvent être exclues si l'auto-excitation du flux d'ordres se compense exactement avec la résilience du prix. Dans un deuxième temps, nous proposons une méthode de calibration du modèle, que nous appliquons sur des données financières à haute fréquence issues de cours d'actions du CAC40. Sur ces données, nous trouvons que le modèle explique une partie non-négligeable de la variance des prix. Une évaluation de la stratégie optimale en backtest montre que celle-ci est profitable en moyenne, mais que des coûts de transaction réalistes suffisent à empêcher les manipulations de prix. Ensuite, dans la deuxième partie de la thèse, nous nous intéressons à la modélisation de la volatilité intra-journalière. Dans la littérature, la plupart des modèles de volatilité rétroactive se concentrent sur l'échelle de temps journalière, c'est-à-dire aux variations de prix d'un jour sur l'autre. L'objectif est ici d'étendre ce type d'approche à des échelles de temps plus courtes. Nous présentons d'abord un modèle de type ARCH ayant la particularité de prendre en compte séparément les contributions des rendements passés intra-journaliers et nocturnes. Une méthode de calibration de ce modèle est étudiée, ainsi qu'une interprétation qualitative des résultats sur des rendements d'actions américaines et européennes. Dans le chapitre suivant, nous réduisons encore l'échelle de temps considérée. Nous étudions un modèle de volatilité à haute fréquence, dont l'idée est de généraliser le cadre des processus Hawkes pour mieux reproduire certaines caractéristiques empiriques des marchés. Notamment, en introduisant des effets de rétroaction quadratiques inspirés du modèle à temps discret QARCH nous obtenons une distribution en loi puissance pour la volatilité ainsi que de l'asymétrie temporelle / In this thesis we study feedback effects in finance and we focus on two of their applications. These effects stem from the fact that traders split meta-orders sequentially, and also from feedback loops. Therefore, one can observe clusters of activity and periods of relative calm. The first part introduces an dynamic optimal execution framework with an exogenous stochastic flow of market orders. Our starting point is the well-known model of Obizheva and Wang which defines an execution framework with both permanent and transient price impacts. We modify the price model by adding an order flow based on Hawkes processes, which are self-exciting jump processes. The theory of stochastic control allows us to derive the optimal strategy as a closed formula. Also, we discuss the existence of Price Manipulations Strategies in the sense of Huberman and Stanzl which can be excluded from the model if the self-exciting property of the order flow exactly compensates the resilience of the price. The next chapter studies a calibration protocol for the model, which we apply to tick-by-tick data from CAC40 stocks. On this dataset, the model is found to explain a significant part of the variance of prices. We then evaluate the optimal strategy with a series of backtests, which show that it is profitable on average, although realistic transaction costs can prevent manipulation strategies. In the second part of the thesis, we turn to intra-day volatility modeling. Previous works from the volatility feedback literature mainly focus on the daily time scale, i.e. on close-to-close returns. Our goal is to use a similar approach on shorter time scales. We first present an ARCH-type model which accounts for the contributions of past intra-day and overnight returns separately. A calibration method for the model is considered, that we use on US and European stocks, and we provide some qualitative insights on the results. The last chapter of the thesis is dedicated to a high-frequency volatility model. We introduce a continuous-time analogue of the QARCH framework, which is also a generalization of Hawkes processes. This new model reproduces several important stylized facts, in particular it generates a time-asymmetric and fat-tailed volatility process
5

Smoothing stochastic bang-bang problems

Eichmann, Katrin 24 July 2013 (has links)
Motiviert durch das Problem der optimalen Strategie beim Handel einer großen Aktienposition, behandelt diese Arbeit ein stochastisches Kontrollproblem mit zwei besonderen Eigenschaften. Zum einen wird davon ausgegangen, dass das Kontrollproblem eine exponentielle Verzögerung in der Kontrollvariablen beinhaltet, zum anderen nehmen wir an, dass die Koeffizienten des Kontrollproblems linear in der Kontrollvariablen sind. Wir erhalten ein degeneriertes stochastisches Kontrollproblem, dessen Lösung - sofern sie existiert - Bang-Bang-Charakter hat. Die resultierende Unstetigkeit der optimalen Kontrolle führt dazu, dass die Existenz einer optimalen Lösung nicht selbstverständlich ist und bewiesen werden muss. Es wird eine Folge von stochastischen Kontrollproblemen mit Zustandsprozessen konstruiert, deren jeweilige Diffusionsmatrix invertierbar ist und die ursprüngliche degenerierte Diffusionsmatrix approximiert. Außerdem stellen die Kostenfunktionale der Folge eine konvexe Approximation des ursprünglichen linearen Kostenfunktionals dar. Um die Konvergenz der Lösungen dieser Folge zu zeigen, stellen wir die Kontrollprobleme in Form von stochastischen Vorwärts-Rückwärts-Differential-gleichungen (FBSDEs) dar. Wir zeigen, dass die zu der konstruierten Folge von Kontrollproblemen gehörigen Lösungen der Vorwärts-Rückwärtsgleichungen – zumindest für eine Teilfolge - in Verteilung konvergieren. Mit Hilfe einer Konvexitätsannahme der Koeffizienten ist es möglich, einen Kontroll-prozess auf einem passenden Wahrscheinlichkeitsraum zu konstruieren, der optimal für das ursprüngliche stochastische Kontrollproblem ist. Neben der damit bewiesenen Existenz einer optimalen (Bang-Bang-) Lösung, wird damit auch eine glatte Approximation der unstetigen Bang-Bang-Lösung erreicht, welche man für die numerische Approximation des Problems verwenden kann. Die Ergebnisse werden schließlich dann in Form von numerischen Simulationen auf das Problem der optimalen Handels¬ausführung angewendet. / Motivated by the problem of how to optimally execute a large stock position, this thesis considers a stochastic control problem with two special properties. First, the control problem has an exponential delay in the control variable, and so the present value of the state process depends on the moving average of past control decisions. Second, the coefficients are assumed to be linear in the control variable. It is shown that a control problem with these properties generates a mathematically challenging problem. Specifically, it becomes a stochastic control problem whose solution (if one exists) has a bang-bang nature. The resulting discontinuity of the optimal solution creates difficulties in proving the existence of an optimal solution and in solving the problem with numerical methods. A sequence of stochastic control problems with state processes is constructed, whose diffusion matrices are invertible and approximate the original degenerate diffusion matrix. The cost functionals of the sequence of control problems are convex approximations of the original linear cost functional. To prove the convergence of the solutions, the control problems are written in the form of forward-backward stochastic differential equations (FBSDEs). It is then shown that the solutions of the FBSDEs corresponding to the constructed sequence of control problems converge in law, at least along a subsequence. By assuming convexity of the coefficients, it is then possible to construct from this limit an admissible control process which, for an appropriate reference stochastic system, is optimal for our original stochastic control problem. In addition to proving the existence of an optimal (bang-bang) solution, we obtain a smooth approximation of the discontinuous optimal bang-bang solution, which can be used for the numerical solution of the problem. These results are then applied to the optimal execution problem in form of numerical simulations.
6

Optimal Trading with Multiplicative Transient Price Impact for Non-Stochastic or Stochastic Liquidity

Frentrup, Peter 28 October 2019 (has links)
Diese Arbeit untersucht eine Reihe multiplikativer Preiseinflussmodelle für das Handeln in einer riskanten Anlage. Unser risikoneutraler Investor versucht seine zu erwartenden Handelserlöse zu maximieren. Zunächst modellieren wir den vorübergehende Preiseinfluss als deterministisches Funktional der Handelsstrategie. Wir stellen den Zusammenhang mit Limit-Orderbüchern her und besprechen die optimale Strategie zum Auf- bzw. Abbau einer Anlageposition bei a priori unbeschränkem Anlagehorizont. Anschließend lösen wir das Optimierungsproblem mit festem Anlagehorizon in zwei Schritten. Mittels Variationsrechnung lässt sich die freie Grenzefläche, die Kauf- und Verkaufsregionen trennt, als lokales Optimum identifizieren, was entscheidend für die Verifikation globaler Optimalität ist. Im zweiten Teil der Arbeit erweitern wir den zwischengeschalteten Markteinflussprozess um eine stochastische Komponente, wodurch optimale Strategien dynamisch an zufällige Liquiditätsschwankungen adaptieren. Wir bestimmen die optimale Liquidierungsstrategie im zeitunbeschränkten Fall als die reflektierende Lokalzeit, die den Markteinfluss unterhalb eines explizit beschriebenen nicht-konstanten Grenzlevels hält. Auch dieser Beweis kombiniert Variationsrechnung und direkten Methoden. Um nun eine Zeitbeschränkung zu ermöglichen, müssen wir Semimartingalstrategien zulassen. Skorochods M1-Toplogie ist der Schlüssel, um die Klasse der möglichen Strategien in einer umfangreichen Familie von Preiseinflussmodellen, welche sowohl additiven, als auch multiplikativen Preiseinfluss umfasst, mit deterministischer oder stochastischer Liquidität, eindeutig von endlichen Variations- auf allgemeine càdlàg Strategien zu erweitern. Nach Einführung proportionaler Transaktionskosten lösen wir das entsprechende eindimensionale freie Grenzproblem des optimalen unbeschränkten Handels und beleuchten mögliche Lösungsansätze für das Liquidierungsproblem, das mit dem Verkauf der letzten Anleihe endet. / In this thesis, we study a class of multiplicative price impact models for trading a single risky asset. We model price impact to be multiplicative so that prices are guaranteed to stay non-negative. Our risk-neutral large investor seeks to maximize expected gains from trading. We first introduce a basic variant of our model, wherein the transient impact is a deterministic functional of the trading strategy. We draw the connection to limit order books and give the optimal strategy to liquidate or acquire an asset position infinite time horizon. We then solve the optimization problem for finite time horizon two steps. Calculus of variations allows to identify the free boundary surface that separates buy and sell regions and moreover show its local optimality, which is a crucial ingredient for the verification giving (global) optimality. In the second part of the thesis, we add stochasticity to the auxiliary impact process. This causes optimal strategies to dynamically adapt to random changes in liquidity. We identify the optimal liquidation strategy in infinite horizon as the reflection local time which keeps the market impact process below an explicitly described non-constant free boundary level. Again the proof technique combines classical calculus of variations and direct methods. To now impose a time constraint, we need to admit semimartingale strategies. Skorokhod's M1 topology is key to uniquely extend the class of admissible controls from finite variation to general càdlàg strategies in a broad class of market models including multiplicative and additive price impact, with deterministic or stochastic liquidity. After introducing proportional transaction costs in our model, we solve the related one-dimensional free boundary problem of unconstrained optimal trading and highlight possible solution methods for the corresponding liquidation problem where trading stops as soon as all assets are sold.

Page generated in 0.0891 seconds