Spelling suggestions: "subject:"doptimisation ett contrôle"" "subject:"doptimisation eet contrôle""
31 |
Sur la contrôlabilité et son coût pour quelques équations aux dérivées partiellesLissy, Pierre 11 December 2013 (has links) (PDF)
Dans cette thèse, on s'intéresse à la contrôlabilité et son coût pour un certain nombre d'équations aux dérivées partielles linéaires ou non linéaires issues de la physique. La première partie de la thèse concerne la contrôlabilité à zéro de l'équation de Navier-Stokes tridimensionnelle avec conditions au bord de Dirichlet et contrôle interne distribué sur un sous-ouvert de domaine de définition n'agissant que sur une seule des trois équations. La preuve repose sur la méthode du retour ainsi que sur une méthode originale de résolution algébrique de systèmes différentiels inspirée de travaux de Gromov. La deuxième partie de la thèse concerne le coût du contrôle en temps petit ou en viscosité évanescente d'équations linéaires unidimensionnelles. Dans un premier temps, on montre que l'on peut, dans certains cas, faire un lien entre ces deux problèmes. Notamment il est possible d'obtenir des résultats de contrôlabilité uniforme de l'équation de transport-diffusion unidimensionnelle à coefficients constants contrôlée sur le bord gauche à l'aide de résultats déjà connus sur le contrôle de l'équation de la chaleur. Dans un second temps, on s'intéresse au coût du contrôle frontière en temps petit d'un certain nombre d'équations pour lesquelles l'opérateur spatial associé est autoadjoint ou anti-autoadjoint à résolvante compacte et ayant des valeurs propres se comportant de manière polynomiale, en utilisant la méthode des moments. On en déduit des résultats pour des équations de type Korteweg-de-Vries linéarisées, diffusion fractionnaire et Schrödinger fractionnaire.
|
32 |
Optimisation de formes, méthode des lignes de niveaux sur maillages non structurés et évolution de maillagesDapogny, Charles 04 December 2013 (has links) (PDF)
L'objectif principal de cette thèse est de concevoir une méthode d'optimisation de structures qui jouit d'une description exacte (i.e. au moyen d'un maillage) de la forme à chaque itération du processus, tout en bénéficiant des avantages de la méthode des lignes de niveaux lorsqu'il s'agit de suivre leur évolution. Indépendamment, on étudie également deux problèmes de modélisation en optimisation structurale. Dans une première partie bibliographique, on présente quelques notions classiques, ainsi qu'un état de l'art sommaire autour des trois thématiques principales de la thèse - méthode des lignes de niveaux (Chapitre 1), optimisation de formes (Chapitre 2) et maillage (Chapitre 3). La seconde partie de ce manuscrit traite de deux questions en optimisation de formes, celle de la répartition optimale de plusieurs matériaux au sein d'une structure donnée (Chapitre 4), et celle de l'optimisation robuste de fonctions dépendant du domaine lorsque des perturbations s'exercent sur le modèle (Chapitre 5). Dans une troisième partie, on étudie la conception de schémas numériques en lien avec la méthode des lignes de niveaux lorsque le maillage de calcul est simplicial (et potentiellement adapté). Le calcul de la distance signée à un domaine est étudié dans le chapitre 6, et la résolution de l'équation de transport d'une fonction 'level set' est détaillée dans le chapitre 7. La quatrième partie (Chapitre 8) traite des aspects de la thèse liés à la modification locale de maillages surfaciques et volumiques. Enfin, la dernière partie (Chapitre 9) détaille la stratégie conçue pour l'évolution de maillage en optimisation de formes, à partir des ingrédients des chapitres 6, 7 et 8.
|
33 |
Contrôlabilité de systèmes gouvernés par des équations aux dérivées partiellesMauffrey, Karine 23 October 2012 (has links) (PDF)
Contrôlabilité de systèmes gouvernés par des équations aux dérivées partielles
|
34 |
Approches Computationnelles pour l'Analyse et le Contrôle des Systèmes HybridesGirard, Antoine 19 November 2013 (has links) (PDF)
Un système hybride est un système dynamique exhibant à la fois des comportements de nature discrète et continue. Motivée par la multiplication de composants informatiques embarqués ''discrets'' interagissant avec le monde physique ''continu'', la recherche sur les systèmes hybrides s'est développée rapidement depuis les années 90 à l'intersection de l'informatique, de l'automatique et des mathématiques appliquées. Ce mémoire présente nos contributions, théoriques ou méthodologiques, à ce domaine. Dans une première partie, nous introduisons un cadre d'approximation qui s'applique aux systèmes dynamiques continus, discrets et hybrides; des applications, notamment dans le domaine du contrôle symbolique sont présentées. La deuxième partie est consacrée à l'analyse d'atteignabilité, une technique computationnelle très utile pour l'analyse des systèmes hybrides. Enfin, la troisième partie porte sur les systèmes dynamiques multi-agents.
|
35 |
Conception et développement d'un mailleur énergétique adaptatif pour la génération des bibliothèques multigroupes des codes de transportMosca, Pietro 09 December 2009 (has links) (PDF)
Les codes déterministes de transport résolvent l'équation stationnaire de Boltzmann dans un formalisme discrétisé en énergie appelé multi- groupe. La transformation des données continues en multigroupes est obtenue en moyennant les sections fortement variables des noyaux ré- sonnants avec le flux solution des modèles physiques d'autoprotection et celles des noyaux non résonnants avec le spectre énergétique représentatif d'un type de réacteur. Jusqu'ici l'erreur induite par ce type de traitement ne pouvait qu'être évaluée a posteriori. Pour y remédier, nous avons étu- dié dans cette thèse un ensemble de méthodes, permettant de contrôler a priori la précision et le coût du calcul de transport multigroupe. L'optimisation du maillage énergétique est réalisée selon un proces- sus en deux étapes : la création d'un maillage de référence et sa conden- sation optimisée. Dans la première étape, en raffinant localement et glo- balement le maillage énergétique, on cherche une solution multigroupe sur un maillage énergétique fin avec une autoprotection en sous-groupes de précision équivalente au solveur de référence (Monte Carlo ou déter- ministe ponctuel). Dans la deuxième étape, une fois fixé le nombre de groupes en fonction du coût admissible du calcul et choisis les modèles d'autoprotection les plus adéquats pour la filière à traiter, on cherche les meilleures bornes du maillage de référence minimisant les erreurs des taux de réaction grâce à l'algorithme stochastique d'optimisation des es- saims particulaires. Cette nouvelle approche a permis de définir des nouveaux maillages pour la filière rapide aussi précis que les maillages actuels mais présentant un nombre inférieur de groupes.
|
36 |
Mesures d'occupation et relaxations semi-définies pour la commande optimaleClaeys, Mathieu 08 October 2013 (has links) (PDF)
Cette thèse s'intéresse au calcul de solutions globales de problèmes de commande optimale en boucle ouverte. La méthodologie générale se base sur l'approche par les moments, où un problème d'optimisation est relâché en un problème généralisé des moments, dont une hiérarchie de relaxations semi-définies peut être résolue numériquement. L'approche est tout d'abord appliquée aux problèmes impulsionnels linéaires à temps variant, en modélisant le contrôle par une mesure. Les conditions semi-définies qui en résultent permettent de s'affranchir complètement des difficultés liées à la discrétisation temporelle. Ensuite, en se basant sur le formalisme des mesures d'occupations, la méthode peut être étendue aux systèmes impulsionnels non-linéaires, et fournit une suite monotone de bornes inférieures au coût optimal. Enfin, les résultats précédents peuvent être transposés aux systèmes à commutation, en modélisant chaque mode par une mesure d'occupation associée. Ceci permet d'obtenir des gains substantiels en charge de calcul par rapport à l'approche classique où l'espace de contrôle est mesuré.
|
37 |
Observateurs en dimension infinie. Application à l'étude de quelques problèmes inverseHaine, Ghislain 22 October 2012 (has links) (PDF)
Dans un grand nombre d'applications modernes, on est amené à estimer l'état initial (ou final) d'un système infini-dimensionnel (typiquement un système gouverné par une Équation aux Dérivées Partielles (EDP) d'évolution) à partir de la connaissance partielle du système sur un intervalle de temps limité. Un champ d'applications dans lequel apparaît fréquemment ce type de problème d'identification est celui de la médecine. Ainsi, la détection de tumeurs par tomographie thermo-acoustique peut se ramener à des problèmes de reconstruction de données initiales. D'autres méthodes nécessitent l'identification d'un terme source, qui, sous certaines hypothèses, peut également se réécrire sous la forme d'un problème de reconstruction de données initiales. On s'intéresse dans cette thèse à la reconstruction de la donnée initiale d'un système d'évolution, en travaillant autant que possible sur le système infini-dimensionnel, à l'aide du nouvel algorithme développé par Ramdani, Tucsnak et Weiss (Automatica 2010). Nous abordons en particulier l'analyse numérique de l'algorithme dans le cadre des équations de Schrödinger et des ondes avec observation interne. Nous étudions les espaces fonctionnels adéquats pour son utilisation dans les équations de Maxwell, avec observations interne et frontière. Enfin, nous tentons d'étendre le cadre d'application de cet algorithme lorsque le système initial est perturbé ou que le problème inverse n'est plus bien posé, avec application à la tomographie thermo-acoustique.
|
38 |
Quelques sujets en contrôle déterministe et stochastique : méthodes de type LP, PDMP associés aux réseaux de gènes, contrôlabilitéGoreac, Dan 16 September 2013 (has links) (PDF)
Le but de cette synthèse est de présenter mon activité de recherche couvrant la période de temps écoulée à partir de l'année terminale de ma thèse (c'est à dire, la période octobre 2008 - février 2013). Mes thèmes de recherche correspondent, en majeure partie, à trois directions principales, chacune présentée dans une section dédiée : - méthodes de programmation linéaire dans l'étude des problèmes de contrôle déterministe ou stochastique ; - méthodes de contrôle des processus Markoviens déterministes par morceaux et leurs applications dans la théorie des réseaux stochastiques de gènes. - propriétés de contrôlabilité des systèmes linéaires stochastiques et sujets connexes. Dans le premier chapitre, nous étudions plusieurs classes de problèmes de contrôle déterministe ou stochastique à coût discontinu. Dans le contexte stochastique, nous considérons le problème de type Mayer et l'arrêt optimal des diffusions contrôlées (correspondant à l'article [G10]), les principes de la programmation dynamique (correspondant à l'article [G6]), ainsi qu'une classe de problèmes de contrôle impliquant des contraintes d'état (correspondant à l'article [G2]). Nous étudions également : des problèmes de contrôle à coût escompté et en horizon infini, ainsi que la moyennisation en temps long (correspondant à [G12]), des systèmes régis par des inégalités variationnelles stochastiques (dans [G3]) et une caractérisation de type Zubov pour les domaines de stabilité asymptotique (toujours dans [G3]). Nous investiguons l'existence d'une fonction valeur limite pour une classe de problèmes de contrôle stochastique sous des hypothèses de non-expansivité, ainsi que des théorèmes Tauberiennes uniformes (correspondant à [G19]). Dans le cadre déterministe, nous considérons la linéarisation et les principes de la programmation dynamique pour des problèmes de type coût supremum (ce qui correspond à [G9]) et pour des systèmes à contraintes d'état (dans [G1]). Nous proposons une méthode de linéarisation pour des problèmes de type min-max (correspondant à [G18]). Le point commun entre ces articles réside dans la méthode employée basée sur des formulation linéaires et des techniques de viscosité. Nous présentons également des résultats de viabilité pour les perturbations singulières des systèmes contrôlés (correspondant à [G13]). Le deuxième chapitre est axé sur quelques contributions à la théorie des processus de Markov déterministes par morceaux (PDMP, acronyme anglais de "piecewise deterministic Markov process"). Nous investiguons des conditions géométriques pour la viabilité et l'invariance des ensembles fermés par rapport aux dynamiques PDMP contrôlées (correspondant à l'article [G5]). Nous proposons également des formulations linéaires pour certains problèmes de contrôle dans ce contexte (correspondant aux articles [G8] et [G4]). Ces résultats permettent d'en inférer certaines conditions d'atteignabilité (dans l'article [G5]) ainsi que de caractériser les domaines de stabilité asymptotique en généralisant la méthode de Zubov (dans l'article [G4]). Les résultats théoriques sont appliqués à une classe de systèmes associés à des réseaux stochastiques de gènes (des modèles On/Off, le modèle proposé par Cook pour l'haploinsuffisance, ainsi que le modèle de Hasty pour la bistabilité du phage lambda). Le dernier chapitre présente l'étude de différentes classes de contrôlabilité pour des systèmes linéaires de type diffusion à sauts (correspondant à l'article [G7]) ou des systèmes linéaires de contrôle à dynamique champs-moyen (correspondant à l'article [G20]). Les arguments font intervenir des techniques de viabilité ainsi que des équations différentielles de type Riccati. Une première étape dans l'étude des propriétés de contrôlabilité des systèmes ayant comme espace d'état un espace d'Hilbert est franchie dans l'article [G11]. Nous y proposons une approche de type quasi-tangence dans l'étude de la propriété de (presque)viabilité des systèmes semi-linéaires dans un cadre infini-dimensionnel. Nous avons essayé de rendre le manuscrit aussi autonome que possible. Pour en assurer la lisibilité, nous avons également essayé de garder l'indépendance des chapitres. Afin de garder une dimension raisonnable du manuscrit, nous avons fait le choix de limitation de la redondance. Pour cette raison, les problèmes de contrôle sous contraintes d'état ont été présentés uniquement dans le contexte stochastique. Aussi, les détails précis de la méthode de Zubov ont été spécifiés uniquement dans le cas des processus Markoviens déterministes par morceaux et les contributions aux diffusions Browniennes ont été seulement mentionnées.
|
39 |
Semiotics of Motion: Toward a Robotics Programing LanguageMansard, Nicolas 01 July 2013 (has links) (PDF)
My work is aiming at establishing the bases of a semiotics of motion, in order to facilitate the programing of complex robotics systems. The objective is to build a symbolic model of the action, based on the analysis of the numerical functions that drive the motion (control and planning). The methodology comes from the well-known robotics concepts: motion-planning algorithms, control of redundant systems and task-function approach. The originality of the work is to consider the "task" as the unifying concept both to describe the motion and to control its execution. The document is organized in two parts. In the first part, the task-function control framework is extended to cover all the possible modalities of the robot. The objective is to absorb from the lowest-possible functional level the maximum of uncertainty factors. It is then not any more necessary to model these factors at the higher functional levels. This sensorimotor layer is then used as a basic action "vocabulary" that enables the system to be controlled with a higher-level interface. In the second part, this action vocabulary is used to provide a dedicated robotics programing language, to build motion-planning methods and to describe an observed movement. The proposed methods are generic and can be applied to a various systems, from robotics (redundant robots) to computer animation (virtual avatars). Nonetheless, the work is more specifically dedicated to humanoid robotics. Without forgetting other possible outlets, humanoid robotics provides a tangible applicative and experimental framework. It also leads toward the natural human motion, as presented in the end of the document.
|
40 |
Stabilisation sous contraintes locales et globalesStein Shiromoto, Humberto 23 June 2014 (has links) (PDF)
Dans ce travail, deux problèmes issus de la théorie de la stabilité ont été étudiés: la synthèse de loi de commandes stabilisantes et l'analyse de la stabilité des systèmes interconnectés sous contraintes locales et globales. En ce qui concerne la synthèse, la problématique a été de concevoir une loi de commande pour les systèmes où la technique de Backstepping ne peut pas être appliquée pour stabiliser globalement l'origine mais s'avère utile pour stabiliser le système autour d'un ensemble désiré. Ensuite, il a été considéré le problème de concevoir une loi de commande qui stabilise localement l'origine de telle sorte que le bassin d'attraction contienne l'ensemble attracteur global. La stabilité globale est obtenue à travers une commutation des lois de commande. Pour l'analyse, il a été considéré le cas où le théorème des petits gains ne peut pas être appliqué dans un intervalle fini des réels positifs. L'approche consiste à utiliser l'analyse des petits gains où il est applicable et, dehors de ces regions, il a été étudié la variation de la mesure de l'ensemble des solutions. Des conditions suffisantes sont fournies pour que l'ensemble des conditions initiales pour lesquelles les solutions correspondantes ne convergent pas à l'origine ait une mesure de Lebesgue à zéro.
|
Page generated in 0.1395 seconds