• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Identificação de danos estruturais utilizando técnicas de otimização. / Damage assessment using optimization techniques.

Genasil Francisco dos Santos 26 August 2009 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Sistemas estruturais em suas variadas aplicações incluindo-se veículos espaciais, automóveis e estruturas de engenharia civil tais como prédios, pontes e plataformas off-shore, acumulam dano durante suas vidas úteis. Em muitas situações, tal dano pode não ser visualmente observado. Do ponto de vista da segurança e da performance da estrutura, é desejável monitorar esta possível ocorrência, localizá-la e quantificá-la. Métodos de identificação de sistemas, que em geral, são classificados numa categoria de Técnicas de Avaliação Não-Destrutivas, podem ser utilizados para esta finalidade. Usando dados experimentais tais como frequências naturais, modos de vibração e deslocamentos estáticos, e um modelo analítico estrutural, parâmetros da estrutura podem ser identificados. As propriedades estruturais do modelo analítico são modificadas de modo a minimizar a diferença entre os dados obtidos por aquele modelo e a resposta medida. Isto pode ser definido como um problema inverso onde os parâmetros da estrutura são identificados. O problema inverso, descrito acima, foi resolvido usando métodos globais de otimização devido à provável presença de inúmeros mínimos locais e a não convexidade do espaço de projeto. Neste trabalho o método da Evolução Diferencial (Differential Evolution, DE) foi utilizado como ferramenta principal de otimização. Trata-se de uma meta-heurística inspirada numa população de soluções sucessivamente atualizada por operações aritméticas como mutações, recombinações e critérios de seleção dos melhores indivíduos até que um critério de convergência seja alcançado. O método da Evolução Diferencial foi desenvolvido como uma heurística para minimizar funções não diferenciáveis e foi aplicado a estruturas planas de treliças com diferentes níveis de danos. / Structural systems in a variety of applications including aerospace vehicles, automobiles and civil engineering structures such as tall buildings, bridges and offshore platforms, accumulate damage during their service life. In several situations, such damage may not be visually observable. From the standpoint of both safety and performance, it is desirable to monitor the occurrence, location and extent of such damage.System identification methods, which may be classified in a general category of nondestructive evaluation techniques, can be employed for this purpose. Using experimental data, such as eigenmodes, eigenvectors and static displacements, and an analytical structural model, parameters of the structures can be identified. The approach used in the present work is one where the structural properties of the analytical model are varied to minimize the difference between the analytically predicted and empirically measured response. This is an inverse problem where the structural parameters are identified. In this work a reduced number of vibration modes were used as the measured response. For the damage assessment problem a close analytical model of the structural system is available and the model of the damaged structure will be identified. Damage will be represented by a reduction in the elastic stiffness properties of the structure.The problem described above was solved using global methods of optimization due to the fact that depending on the number of variables or the location of damage the resulting design space is nonconvex presenting several local minima. In the present work, the Differential Evolution Optimization Technique (DE) was used. It is a metaheuristic inspired by a population of solutions that is successively updated by arithmetic operations such as mutation and recombination, until convergence. The approach was applied to simple truss structures with different levels of damage.
12

Hybridization of particle Swarm Optimization with Bat Algorithm for optimal reactive power dispatch

Agbugba, Emmanuel Emenike 06 1900 (has links)
This research presents a Hybrid Particle Swarm Optimization with Bat Algorithm (HPSOBA) based approach to solve Optimal Reactive Power Dispatch (ORPD) problem. The primary objective of this project is minimization of the active power transmission losses by optimally setting the control variables within their limits and at the same time making sure that the equality and inequality constraints are not violated. Particle Swarm Optimization (PSO) and Bat Algorithm (BA) algorithms which are nature-inspired algorithms have become potential options to solving very difficult optimization problems like ORPD. Although PSO requires high computational time, it converges quickly; while BA requires less computational time and has the ability of switching automatically from exploration to exploitation when the optimality is imminent. This research integrated the respective advantages of PSO and BA algorithms to form a hybrid tool denoted as HPSOBA algorithm. HPSOBA combines the fast convergence ability of PSO with the less computation time ability of BA algorithm to get a better optimal solution by incorporating the BA’s frequency into the PSO velocity equation in order to control the pace. The HPSOBA, PSO and BA algorithms were implemented using MATLAB programming language and tested on three (3) benchmark test functions (Griewank, Rastrigin and Schwefel) and on IEEE 30- and 118-bus test systems to solve for ORPD without DG unit. A modified IEEE 30-bus test system was further used to validate the proposed hybrid algorithm to solve for optimal placement of DG unit for active power transmission line loss minimization. By comparison, HPSOBA algorithm results proved to be superior to those of the PSO and BA methods. In order to check if there will be a further improvement on the performance of the HPSOBA, the HPSOBA was further modified by embedding three new modifications to form a modified Hybrid approach denoted as MHPSOBA. This MHPSOBA was validated using IEEE 30-bus test system to solve ORPD problem and the results show that the HPSOBA algorithm outperforms the modified version (MHPSOBA). / Electrical and Mining Engineering / M. Tech. (Electrical Engineering)
13

新的加權平均損失管制圖 / A new weighted average loss control chart

歐家玲, Ou, Chia Ling Unknown Date (has links)
近幾年來,有一些研究提出了只用單一一個管制圖即可同時偵測平均數和變異數。根據此目的,我們提出了加權平均損失管制圖,此管制圖是利用加權平均損失所建立的,在一個製成的目標值和平均數不一定相等時,它可同時監控一個製成的平均數和變異數。此加權平均損失統計量是應用一個加權因子,去調整製程平均和目標值的平方差和變異數的損失比重,所以此管制圖的效能比未經由加權因子調整過的管制圖還好。我們不只建立了固定管制參數(FP)加權平均損失管制圖,也建立了適應性加權平均損失管制圖,包括變動抽樣間隔(VSI)、變動樣本數與抽樣間隔(VSI)、變動管制參數(VP);我們利用平均連串長度(ARL)來衡量固定管制參數管制圖的偵測績效,利用馬可夫鏈的方法計算偵測出異常訊息所需的平均時間(ATS)來衡量適應性管制圖的績效,並且做比較,我們發現適應性管制圖比固定管制參數管制圖的效能還要好。我們也利用最佳化技術建立最加適應性管制圖,當製成失控時,此最佳化管制圖能使ATS1最小。此外,當平均數和變異數的偏移幅度很小時,我們利用指數加權移動平均法(EWMA)建立EWMA加權平均損失管制圖,使其有較好的偵測力。這些我們所提出的管制圖,是只根據單一一個統計量所建立的,和X bar-S管制圖相比,有較好的效能,且和使用兩個管制圖同時偵測平均數和變異數相比,比較輕易理解且容易執行。 / In recent years, a few researchers had proposed different types of single charts that jointly monitor the process mean and the variation. In this project, we use the weighted average loss (WL) to construct WL control charts for monitoring the process mean and variance simultaneously while the target value may be different from the in-control mean. This statistic WL applied a weighted factor to adjust the weights of the loss due to the square of the deviation of the process mean from the target and the variance change. So the WL charts are more effective than unadjusted loss function charts. We not only construct the fixed parameters (FP) WL chart but also the adaptive WL charts which included variable sampling interval (VSI) WL chart, variable sample size and sampling interval (VSSI) WL chart and variable parameters (VP) WL chart. We calculate the average run length (ARL) for FP WL chart and using Markov chain approach to calculate the average time to signal (ATS) for adaptive WL charts to measure the performance and compare each other. From the comparison, we find the adaptive WL charts are more effective than the FP WL chart. We also proposed the optimal adaptive WL charts using an optimization technique to minimize ATS1 (ARL1) when the process was out-of-control. In addition, in order to detect the small shifts of the process mean and variance effectively, we construct the WL charts using the EWMA scheme. The proposed charts are based on only one statistic and are more effective than the X bar-S chart. And the WL charts are easy to understand and apply than using two charts for detecting the mean and variance shifts simultaneously.
14

Solid-Solution Strengthening and Suzuki Segregation in Co- and Ni-based Alloys

Dongsheng Wen (12463488) 29 April 2022 (has links)
<p>Co and Ni are two major elements in high temperature structural alloys that include superalloys for turbine engines and hard metals for cutting tools. The recent development of complex concentrated alloys (CCAs), loosely defined as alloys without a single principal element (e.g. CoNiFeMn), offers additional opportunities in designing new alloys through extensive composition and structure modifications. Within CCAs and Co- and Ni-based superalloys, solid-solution strengthening and stacking fault energy engineering are two of the most important strengthening mechanisms. While studied for decades, the potency and quantitative materials properties of these mechanisms remain elusive. </p> <p><br></p> <p>Solid-solution strengthening originates from stress field interactions between dislocations and solute of various species in the alloy. These stress fields can be engineered by composition modification in CCAs, and therefore a wide range of alloys with promising mechanical strength may be designed. This thesis initially reports on experimental and computational validation of newly developed theories for solid-solution strengthening in 3d transition metal (MnFeCoNi) alloys. The strengthening effects of Al, Ti, V, Cr, Cu and Mo as alloying elements are quantified by coupling the Labusch-type strengthening model and experimental measurements. With large atomic misfits with the base alloy, Al, Ti, Mo, and Cr present strong strengthening effects comparable to other Cantor alloys. </p> <p> </p> <p>Stacking fault energy engineering can enable novel deformation mechanisms and exceptional strength in face-centered cubic (FCC) materials such as austenitic TRIP/TWIP steels and CoNi-based superalloys exhibiting local phase transformation strengthening via Suzuki segregation. We employed first-principles calculations to investigate the Suzuki segregation and stacking fault energy of the FCC Co-Ni binary alloys at finite temperatures and concentrations. We quantitatively predicted the Co segregation in the innermost plane of the intrinsic stacking fault (ISF). We further quantified the decrease of stacking fault energy due to segregation.  </p> <p><br></p> <p>We further investigated the driving force of segregation and the origin of the segregation behaviors of 3d, 4d and 5d elements in the Co- and Ni-alloys. Using first-principles calculations, we calculated the ground-state solute-ISF interaction energies and revealed the trends across the periodic table. We discussed the relationships between the interaction energies and the local lattice distortions, charge density redistribution, density of states and local magnetization of the solutes. </p> <p><br></p> <p>Finally, this thesis reports on new methodologies to accelerate first-principles calculations utilizing active learning techniques, such as Bayesian optimization, to efficiently search for the ground-state energy line of the system with limited computational resources. Based on the expected improvement method, new acquisition strategies were developed and will be compared and presented. </p>

Page generated in 0.1071 seconds