Spelling suggestions: "subject:"Option greeks"" "subject:"Option creeks""
1 |
Spectral Element Method for Pricing European Options and Their GreeksYue, Tianyao January 2012 (has links)
<p>Numerical methods such as Monte Carlo method (MCM), finite difference method (FDM) and finite element method (FEM) have been successfully implemented to solve financial partial differential equations (PDEs). Sophisticated computational algorithms are strongly desired to further improve accuracy and efficiency.</p><p>The relatively new spectral element method (SEM) combines the exponential convergence of spectral method and the geometric flexibility of FEM. This dissertation carefully investigates SEM on the pricing of European options and their Greeks (Delta, Gamma and Theta). The essential techniques, Gauss quadrature rules, are thoroughly discussed and developed. The spectral element method and its error analysis are briefly introduced first and expanded in details afterwards.</p><p>Multi-element spectral element method (ME-SEM) for the Black-Scholes PDE is derived on European put options with and without dividend and on a condor option with a more complicated payoff. Under the same Crank-Nicolson approach for the time integration, the SEM shows significant accuracy increase and time cost reduction over the FDM. A novel discontinuous payoff spectral element method (DP-SEM) is invented and numerically validated on a European binary put option. The SEM is also applied to the constant elasticity of variance (CEV) model and verified with the MCM and the valuation formula. The Stochastic Alpha Beta Rho (SABR) model is solved with multi-dimensional spectral element method (MD-SEM) on a European put option. Error convergence for option prices and Greeks with respect to the number of grid points and the time step is analyzed and illustrated.</p> / Dissertation
|
2 |
台指選擇權之市場指標實證分析吳建民, Wu,Jian-Min Unknown Date (has links)
本研究有系統地收集了2003年8月12日到2005年9月30日止共495個交易日的台指期貨、選擇權市場裡P/C量、P/C倉、隱含波動率(AIV)、不同天數的歷史波動率等收盤資料,進行這些因素與行情走勢間的關係,以及因素彼此的互動性。結果證實分析台指選擇權指標是需要區分金融重大衝擊前後期間,以及區分漲勢、跌勢、盤整的各期間,各期間的選擇權指標均會有不同意涵。
本論文證實使用結構轉換的Chow-ARMA(2,1)模型可能比較符合模擬指數
實況,且GARCH(1,1) 模型也很適合描述台期指貨波動度預測力。在選擇權指標方面:P/C量與AIV與台指期貨呈現負相關,P/C倉與台指期貨正相關。其中以P/C倉對指數漲跌的影響程度最大、P/C量的影響程度次之、AIV影響程度最小。若把隱含波動率區分成買權與賣權之各個波動率更有效地預測行情走勢,在大跌期間的買賣權隱含波動率更能表現出優越的預測能力,其中前兩期的賣權隱含波動率(PIV)更是效率性指標,
實證結果使用20天的歷史波動率比較能貼近選擇權市場的變化,跟過去教
科書慣用的90天不同。若比較歷史波動率與隱含波動率間的關係,結論是當「大跌期」歷史波動率大於買權隱含波動率(CIV)時,買權是會被低估的,其他的各種假設條件均不成立。理由有二:一是市場效率性決定了是否可使用隱含波動率與歷史波動率之間的高低關係。二是「大跌時期」相對於「大漲時期」的市場資訊被反應的更敏銳,而在「大跌時期」的賣權價格反應比買權價格反應更快速敏銳。
本研究推論的Chow-ARMA(2,1) 台指期貨模型、GARCH(1,1) 波動率模型、P/C量-P/C倉-AIV的多變數模型、FMA20/XIV模型等等在研判指數變化上具有參考價值,進一步均可以做為選擇權操作策略參考依據之一。
|
Page generated in 0.0785 seconds