Spelling suggestions: "subject:"arganic donde"" "subject:"0rganic donde""
1 |
Extension of tetrathiafulvalene conjugation through pyrrollic-based dyes : ExTTF porphyrin and ExTTF BODIPYBill, Nathaniel Lloyd 17 March 2014 (has links)
The research and development of organic electron donors is essential in the discovery of photodynamic therapy photosensitizers and catalysts, as well as in the fabrication of organic-based electronic devices. Recently, [pi]-extended tetrathiafulvalenes (exTTFs) have emerged as important organic donors due to their superb electronic properties. However, in general, exTTFs lack significant absorption in the visible and near-infrared portions of the electromagnetic spectrum, thereby limiting their utility. This doctoral dissertation depicts the author's efforts to address this inherent drawback of exTTFs by extending the electronic conjugation of tetrathiafulvalene moieties through pyrrole-based chromophores. The reported findings describe the design, synthesis, properties and potential applications of exTTFs with greatly enhanced absorption profiles. The first Chapter provides a brief historical overview on the history and development of [pi]-extended tetrathiafulvalenes. The various conjugated linkers utilized in exTTF systems are reviewed. In the latter part of the Chapter, emphasis is given to the applications in which exTTFs find use. Chapter 2, as the major focus of the dissertation, details the synthesis and characteristics of a quinoidal porphyrin-bridged exTTF, termed MTTFP. Several metalated complexes, including the Zn, Co, Cu, and Ni derivatives of MTTFP are reported. Additionally, the electrochemical, photophysical, and structural properties of MTTFPs are discussed. We also detail our efforts to synthesize and characterize both the one- and two-electron oxidized forms of MTTFPs. Finally, we discuss our efforts to reversibly switch thermodynamic electron transfer from ZnTTFP to Li@C₆₀ through coordination of axial ligands. Chapter 3 describes the formation of a 2:1 supramolecular ionic porphyrin complex between the two-electron oxidized form of ZnTTFP and a tetranionic sulfonated porphyrin. The association constants and the X-ray crystal structure of the complex are reported. A brief discussion outlining the photophysical characteristics (performed in Prof. Shunichi Fukuzumi and Prof. Dongho Kim's group) of the porphyrin donor-acceptor complexes are included. Chapter 4 details the synthesis, photophysical properties, and spectroelectrochemistry of a difluoroboradiazaindacene (BODIPY) bridged exTTF. This compound is referred to as ex-BODIPY. A singlet oxygen generation study provides initial evidence that ex-BODIPY could potentially serve as a photosensitizer. All of the experimental procedures, characterization data, and X-ray crystallographic data tables are reported in Chapter 5. / text
|
2 |
Ab Initio Ultrafast Laser-Induced Charge Transfer Dynamics in All-Organic and Hybrid Inorganic-Organic InterfacesRychescki Jacobs, Matheus 09 July 2024 (has links)
Die Entwicklung optoelektronischer Geräte wurde stark durch organische Donor-Akzeptor-Komplexe beeinflusst, die eine zentrale Rolle in der modernen Optoelektronik spielen. Diese Materialien ermöglichen ein komplexes Zusammenspiel elektronischer, optischer und phononischer Eigenschaften. Frühe Arbeiten zu konjugierten Polymeren in OLEDs und Bulk-Heterojunktionen in organischen Photovoltaikzellen legten das Fundament für praktikable OLEDs und verbesserten die Effizienz in OPVs.
Kürzlich hat sich das Forschungsfeld auf hybride anorganisch-organische Systeme ausgeweitet. Diese Materialien kombinieren die hohe Ladungsträgerdichte und -mobilität der anorganischen Komponenten mit den Lichtausbeute- und Emissionscharakteristika organischer Moleküle. Die Integration von Übergangsmetall-Dichalcogenid-Monoschichten hat bedeutende Fortschritte gebracht, besonders für die Feineinstellung der Ladungstransferdynamik.
Diese Entwicklungen stellen neue Herausforderungen dar, insbesondere bei der Modellierung laserinduzierter, ultraschneller Ladungstransferdynamik. RT-TDDFT hat sich als effizientes und genaues Werkzeug erwiesen, das für die Untersuchung großer Systeme geeignet ist und die Simulation zeitaufgelöster Phänomene ermöglicht.
Diese Dissertation analysiert die laserinduzierte Ladungstransferdynamik in vollständig organischen und hybriden anorganisch-organischen Grenzflächen. Sie untersucht die Komplexität stark und schwach gebundener Grenzflächen und deren Verhalten unter externen Laserpulsen sowie den Temperatureffekten auf die Ladungstransferdynamik. Die Nutzung von RT-TDDFT zur Modellierung ultraschneller Elektronendynamik und vibronischer Kopplung hat das Verständnis in diesem Feld vertieft und die Effektivität bei der Modellierung optoelektronischer Geräte demonstriert. / The development of optoelectronic devices has been significantly influenced by organic donor-acceptor complexes, which play a central role in modern optoelectronics. These materials enable a complex interplay of electronic, optical, and phononic properties. Early work on conjugated polymers in OLEDs and bulk heterojunctions in organic photovoltaic cells laid the foundation for practical OLEDs and improved efficiency in OPVs.
Recently, the field of research has expanded to hybrid inorganic-organic systems. These materials combine the high charge carrier density and mobility of inorganic components with the light yield and emission characteristics of organic molecules. The integration of transition metal dichalcogenide monolayers has brought significant advances, particularly in fine-tuning charge transfer dynamics.
These developments present new challenges, especially in modeling laser-induced, ultrafast charge transfer dynamics. RT-TDDFT has proven to be an efficient and accurate tool suitable for studying large systems and enabling the simulation of time-resolved phenomena.
This dissertation analyzes the laser-induced charge transfer dynamics in fully organic and hybrid inorganic-organic interfaces. It investigates the complexity of strongly and weakly bound interfaces and their behavior under external laser pulses, as well as the temperature effects on charge transfer dynamics. The use of RT-TDDFT to model ultrafast electron dynamics and vibronic coupling has deepened the understanding in this evolving field and demonstrated its effectiveness in modeling optoelectronic devices.
|
Page generated in 0.0422 seconds