• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 7
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 192
  • 192
  • 133
  • 76
  • 68
  • 38
  • 28
  • 26
  • 25
  • 24
  • 24
  • 23
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Charge transport in organic semiconductors with application to optoelectronic devices

Montero Martín, Jose María 04 October 2010 (has links)
El estudio del transporte de carga en semiconductores orgánicos contribuye al desarrollo y optimización de LEDs orgánicos y nuevas células solares. En OLEDs de un sólo portador se ha encontrado una fórmula explícita de la característica densidad de corriente y potencial (J-V) con movilidad dependiente del campo eléctrico. Un test para diferenciar la movilidad dependiente del campo y de la densidad ha sido dado por medio de una ley universal de escalado. Los espectros de capacidad y los tiempos de tránsito han sido examinados con la inclusión de la movilidad dependiente del campo eléctrico y comparado con los datos experimentales, verificándose el modelo teórico planteado. Se ha descrito la movilidad de portadores de carga a través de un modelo de transporte con una densidad exponencial de trampas. Se han utilizado técnicas de espectroscopía de impedancia para explicar la movilidad dependiente del campo eléctrico en términos del múltiple atrapamiento ejercido por los estados energéticamente localizados. Este modelo ha explicado de forma coherente los espectros de capacidad recogidos en medidas experimentales, particularmente su comportamiento a bajas e intermedias frecuencias. La respuesta de los OLED (polímero SY) ha sido estudiada en los regímenes estacionario y transitorio. En el régimen estacionario, se han descrito las corrientes de fuga a bajos potenciales. Se ha analizado la existencia de mayor corriente circulando por el perímetro que por el área del dispositivo. En el régimen transitorio, se ha proporcionado una explicación sobre las colas de luz emitida observadas al cesar la perturbación de potencial escalón: procede de la inyección limitada de electrones en el cátodo.
62

Developing Chitosan-based Biomaterials for Brain Repair and Neuroprosthetics

Cao, Zheng 01 May 2010 (has links)
Chitosan is widely investigated for biomedical applications due to its excellent properties, such as biocompatibility, biodegradability, bioadhesivity, antibacterial, etc. In the field of neural engineering, it has been extensively studied in forms of film and hydrogel, and has been used as scaffolds for nerve regeneration in the peripheral nervous system and spinal cord. One of the main issues in neural engineering is the incapability of neuron to attach on biomaterials. The present study, from a new aspect, aims to take advantage of the bio-adhesive property of chitosan to develop chitosan-based materials for neural engineering, specifically in the fields of brain repair and neuroprosthetics. Neuronal responses to the developed biomaterials will also be investigated and discussed.In the first part of this study (Chapter II), chitosan was blended with a well-studied hydrogel material (agarose) to form a simply prepared hydrogel system. The stiffness of the agarose gel was maintained despite the inclusion of chitosan. The structure of the blended hydrogels was characterized by light microscopy and scanning electron microscopy. In vitro cell studies revealed the capability of chitosan to promote neuron adhesion. The concentration of chitosan in the hydrogel had great influence on neurite extension. An optimum range of chitosan concentration in agarose hydrogel, to enhance neuron attachment and neurite extension, was identified based on the results. A “steric hindrance” effect of chitosan was proposed, which explains the origin of the morphological differences of neurons in the blended gels as well as the influence of the physical environment on neuron adhesion and neurite outgrowth. This chitosan-agarose (C-A) hydrogel system and its multi-functionality allow for applications of simply prepared agarose-based hydrogels for brain tissue repair.In the second part of this study (Chapter III), chitosan was blended with graphene to form a series of graphene-chitosan (G-C) nanocomposites for potential neural interface applications. Both substrate-supported coatings and free standing films could be prepared by air evaporation of precursor solutions. The electrical conductivity of graphene was maintained after the addition of chitosan, which is non-conductive. The surface characteristic of the films was sensitively dependent on film composition, and in turn, influenced neuron adhesion and neurite extension. Biological studies showed good cytocompatibility of graphene for both fibroblast and neuron. Good cell-substrate interactions between neurons and G-C nanocomposites were found on samples with appropriate compositions. The results suggest this unique nanocomposite system may be a promising substrate material used for the fabrication of implantable neural electrodes. Overall, these studies confirmed the bio-adhesive property of chitosan. More importantly, the developed chitosan-based materials also have great potential in the fields of neural tissue engineering and neuroprosthetics.
63

Formation and Characterization of Polymerized Supported Phospholipid Bilayers and the in vitro Interactions of Macrophages and Fibroblasts.

Page, Jonathan Michael 01 August 2010 (has links)
Planar supported, polymerized phospholipid bilayers (PPBs) composed of 1,2-bis[10-(2’,4’-hexadienoyloxy)decanoyl]-sn-glycero-3-phosphocholine (bis-SorbPC or BSPC) were generated by a redox polymerization method. The PPBs were supported by a silicon substrate. The PPBs were characterized and tested for uniformity and stability under physiological conditions. The PPBs were analyzed in vitro with murine derived cells that are pertinent to the host response. Cellular attachment and phenotypic changes in RAW 264.7 macrophages and NIH 3T3 fibroblasts were investigated on PPBs and compared to bare silicon controls. Fluorescent and SEM images were used to observe cellular attachment and changes in cellular behavior. The PPBs showed much lower cellular adhesion for both cell lines than bare silicon controls. Of the cells that attached to the PPBs, a very low percentage showed the same morphological expressions as seen on the controls. The hypothesis generated from this work is that defects in the PPBs mediated the cellular attachment and morphological changes that were observed. Finally, a layer-by-layer (LbL) deposition of a poly(acrylic acid) (PAA) and poly(N-vinylpyrrolidone) (PNVP) alternating bilayer was attempted as a proof of concept for future modification of this system.
64

Engineering the performance of optical devices using plasmonics and nonlinear organic chromophores

Shahin, Shiva January 2014 (has links)
In this work, two optical devices, organic photovoltaics (OPVs) and optical fibers, are introduced. Each of these devices have performance drawbacks. The major drawbacks of organic photovoltaics is their low absorption rate due to bandgap mismatch with the solar spectrum as well as poor charge carrier mobility and short exciton diffusion length. In order to overcome some of these drawbacks and increase the efficiency of OPVs, we use plasmonic gold nanoparticles (AuNPs). We report 30% increase in the efficiency of bulk-heterojunction OPV after incorporation of 50 nm AuNPs. The optical, electrical, and thermal impacts of AuNPs on the performance of PVs have been investigated experimentally and using Lumerical Solutions and COMSOL Multiphysics® simulation packages. The major contributions of AuNPs is causing near field enhancement and increasing the absorption of the structure by 65%, decreasing the extracted carrier density by quenching the excitons, changing the workfunction of the structure, as well as increasing the temperature of their surrounded medium when exited at their plasmon resonance frequency. Furthermore, one of the challenges in devices made from optical fibers such as wavelength division multiplexing systems, is self-phase modulation (SPM) which is a nonlinear phenomenon. We introduce a novel method to remove the SPM in liquid core optical fibers (LCOF) using nonlinear organic chromophores with a negative third-order susceptibility. The idea of this work is to eliminate the effective nonlinear refractive index that the optical pulses are experiencing while propagating through the LCOF. Further, a novel method is introduced to characterize the third-order optical nonlinear susceptibility of organic chromophores in LCOF system. The presented method is simple, and can be extended to the characterization of other nanoscale particles such as quantum dots and plasmonic metal nanoparticles in solutions. Finally, a convenient method is presented that enables researchers to investigate the mechanisms behind photobleaching of various materials. The photostability of materials is of great importance for their acceptance in commercial systems such as organic photovoltaics, electro-optic (EO) modulators and switches, etc. This method is based on the simultaneous detection of different signals such as second-, and third-harmonic generations as well as two-, and three-photon excitation fluorescence using multi-photon microscopy.
65

PARTIALLY FLUORINATED POLYCYCLIC AROMATIC COMPOUNDS: SYNTHESIS AND SUPRAMOLECULAR BEHAVIOR

Cho, Don Mark 01 January 2007 (has links)
The field of organic electronics has received much attention over the last few years, and engineering of organic crystals to grow with pi-electron systems arranged in a face-to-face motif has been shown to be beneficial in electronic devices. The effects of combining aromatic and perfluorinated aromatic derivatives have shown that the intramolecular stacking pattern can be changed from an edge-to-face arrangement to that of a face-to-face motif. Before the work described herein, there were no reported studies of the supramolecular behavior of fused polycyclic aromatic compounds with partial peripheral fluorination, inducing the desired face-to-face behavior. This is the main focus of the thesis. Furthermore, by exploiting the interactions between the fluorinated and non-fluorinated faces of the molecule, columnar liquid crystalline behavior can be achieved through variations of the alkyl substituents on the molecule.
66

Valsgärdes träartefakter: En komparativ analys av vedarter från båtgravar / The wooden artifacts of Valsgärde: A comparative analysis of wood from boat graves

Hilbert, Amina January 2018 (has links)
Wood has been an integral part of the Scandinavians everyday life for thousands of years. There are still several substantial gaps in knowledge about their wood culture during the Late Iron Age since previous research has been focused on more common findings of inorganic materials like ceramics, metals and glass. Archaeologists rarely find wooden artifacts during excavations due to wood disintegrating a lot faster than metal in the ground. Valsgärde is one of Sweden’s most important Iron Age sites since several wooden remains were found there. They show parts of our distant past that we have yet to understand and gain knowledge about. The few preserved wooden artifacts from the Late Iron Age show a rich culture of wood carving. That is why this study focuses on those very few organic objects that are found. Wooden artifacts might potentially be used to determine the social status of the individuals in the graves. This is examined through a comparative analysis of the wooden remains from Valsgärde and other boat graves in Scandinavia. The analysis also reveals what type of wood the artifacts were made of, which makes it possible to determine if they could be from local trees or if they had to be imported. There seems to be a conscious choice of what kind of wood an object should be made of depending on the purpose at hand and social status. In some cases the choice of wood also seems to be based on the symbolic or mythological meaning of the artifact. This study uses previous microscopic wood analysis from the boat graves to give a more in-depth picture of the Scandinavian Late Iron Age wood culture as a whole.
67

Fabrication, caractérisation et application capteur de MEMS organiques à base de microleviers / Fabrication, characterization and sensor application of organic MEMS based on microcantilever structures

Dubourg, Georges 05 November 2012 (has links)
Cette thèse présente la conception de MEMS à base de matériaux organiques et cela, en vue de réaliser des capteurs biochimiques. Dans ces travaux les matériaux organiques ont été proposés en tant qu’alternative au silicium afin, d’une part, de réduire le coût des capteurs biochimiques par le développement de procédés de structuration simples et peu couteux et, d’autre part, car les polymères peuvent être synthétisés de telle sorte à leur conférer des propriétés spécifiques et contrôlables pour une application visée. Dans ces travaux à fort caractère technologique, des méthodes adaptées à la structuration de ce type de matériau ont été développées. Une de ces méthodes consiste à déposer le matériau organique au travers d’un micropochoir fait en SU-8. Cette méthode permet de déposer et de structurer le matériau en une seule étape, d’une part, et d’autre part de mettre en forme des polymères photo et thermosensibles. Une méthode de report inspirée du «  wafer-bonding en SU-8 » a été adaptée pour la fabrication collective de puces de microleviers organiques. Ensuite, un actionnement électromagnétique a été intégré aux structures afin d’améliorer les performances de ces dernières utilisées en tant que résonateur.Et enfin, un concept original de biocapteur de masse basé sur des microleviers monocouches a été développé. Dans ce cas, la couche sensible faite d’un polymère à empreinte moléculaire assure à la fois, la reconnaissance biologique et la transduction de l’effet mécanique du microlevier. / This thesis presents the design of MEMS-based on organic materials to achieve biochemical sensors. In this work, organic materials have been proposed as an alternative to silicon to reduce the cost of biochemical sensors by developing simple and inexpensive processes, and because polymers can be synthesized to give them specific and controllable properties. In this technological work, suitable methods to pattern this type of materials have been developed. One of these methods combines deposition and patterning in one step thanks to spray-coating through polymer microstencils. Then, to obtain collective production of organic chips free-standing microcantilevers from a free structure, wafer-bonding approach based on bonding of two SU-8 layers has been introduced. On the other hand, an electromagnetic actuator has been integrated into the structures to improve the performances of theses structures used as resonators.And finally, an original concept of mass biosensor based on monolayer microcantilevers has been developed. In this case, the sensitive layer made ​​of molecularly imprinted polymer allows the biological detection and the transduction of the mechanical effect.
68

BIOACTIVE POLY(BETA-AMINO ESTER) BIOMATERIALS FOR TREATMENT OF INFECTION AND OXIDATIVE STRESS

Lakes, Andrew L. 01 January 2016 (has links)
Polymers have deep roots as drug delivery tools, and are widely used in clinical to private settings. Currently, however, numerous traditional therapies exist which may be improved through use of polymeric biomaterials. Through our work with infectious and oxidative stress disease prevention and treatment, we aimed to develop application driven, enhanced therapies utilizing new classes of polymers synthesized in-house. Applying biodegradable poly(β-amino ester) (PBAE) polymers, covalent-addition of bioactive substrates to these PBAEs avoided certain pitfalls of free-loaded and non-degradable drug delivery systems. Further, through variation of polymer ingredients and conditions, we were able to tune degradation rates, release profiles, cellular toxicity, and material morphology. Using these fundamentals of covalent drug-addition into biodegradable polymers, we addressed two problems that exist with the treatment of patients with high-risk wound-sites, namely non-biodegradability that require second-surgeries, and free-loaded antibiotic systems where partially degraded materials fall below the minimum inhibitory concentration, allowing biofilm proliferation. Our in situ polymerizable, covalently-bound vancomycin hydrogel provided active antibiotic degradation products and drug release which closely followed the degradation rate over tunable periods. With applications of antioxidant delivery, we continued with this concept of covalent drug addition and modified a PBAE, utilizing a disulfide moiety to mimic redox processes which glutathione/glutathione disulfide performs. This material was found to not only be hydrolytically biodegradable, but tunable in reducibility through cleavage of the disulfide crosslinker, forming antioxidant groups of bound-thiols, similar to drugs currently used in radioprotective therapies. The differential cellular viability of degradation products containing disulfide or antioxidant thiol forms was profound, and the antioxidant form significantly aided cellular resistance to a superoxide attack, similar to that of a radiation injury. Pathophysiological oxidation in the form of radiation injury or oxidative stress based diseases are often region specific to the body and thus require specific targeting, and nanomaterials are widely researched to perform this. Utilizing a tertiary-amine base-catalyst, we were able to synthesize a high drug content (20-26 wt%) version of the disulfide PBAE previously unattainable. The reduced version of this material created a linear-chain polymer capable of single-emulsion nanoparticle formulation for use with intravenous antioxidant delivery applications instead of local.
69

SYNTHESIS AND CHARACTERIZATION OF POLY(SIMVASTATIN) - INCORPORATED COPOLYMERS AND BLENDS FOR BONE REGENERATION

Asafo-Adjei, Theodora 01 January 2017 (has links)
Common biodegradable polyesters such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) and poly(ε-caprolactone) (PCL) are used as drug delivery vehicles for tissue regenerative applications. However, they are typically bioinert, with drug loading limitations. Polymerizing the active agent or precursor into its respective biodegradable polymer would control drug loading via molar ratios of drug to initiator used for synthesis. Simvastatin was chosen due to its favorable anti-inflammatory, angiogenic, and osteogenic properties. In addition, its lactone ring lends itself to ring-opening polymerization and, consequently, the synthesis of poly(simvastatin) with controlled simvastatin release. Simvastatin was first polymerized with a 5kDa methyl-terminated poly(ethylene glycol) (mPEG) initiator and catalyzed via stannous octoate to form poly(simvastatin)-block-poly(ethylene glycol). Molecular weights ranged from 9.5kDa, with a polydispersity index (PDI) of 1.1 at 150 °C, to 75kDa with a PDI of 6.9 at 250 °C. First-order propagation rates were seen. Infrared spectroscopy showed carboxylic and methyl ether stretches unique to simvastatin and mPEG in the copolymer, respectively. Slow degradation was seen in neutral and alkaline conditions, with simvastatin, simvastatin-incorporated macromolecules, and mPEG identified as degradation products. Alternatively, triazabicyclodecene (TBD) was used to mediate simvastatin polymerization. A lower temperature of 150°C led to successful polymerization using 5kDa mPEG, compared to at least 200 °C via stannous octoate. TBD was also successful for reactions using 2 or 0.55kDa mPEG. The biodegradability of poly(simvastatin)-block-poly(ethylene glycol) via TBD improved, losing twice more mass in phosphate-buffered saline, pH 7.4, than the copolymer synthesized via stannous octoate. Release rates of three different copolymers synthesized demonstrated tunable simvastatin release. To further modulate degradation, poly(simvastatin)-block-poly(ethylene glycol) was blended with 5, 2, or 0.55kDa mPEG-initiated PLA copolymers. The blends showed a compressive elastic modulus ranging from 26 to 44MPa, within the magnitude of trabecular bone (approximately 50MPa). Tunability in mass loss and release was also seen due to varied ratios of incorporated PLA copolymers. Lastly, copolymer degradation byproducts inhibited HMG-CoA reductase and showed possible enhancement of osteoblastic activity in vitro. A pilot study using a rodent calvarial onlay model showed tolerability of the polymers and potential for long-term evaluations of bioactivity. Poly(simvastatin) may be useful in regenerative applications.
70

The Development of a Novel Polymer Based System for Gene Delivery

Le, Anh Van 18 November 2015 (has links)
Gene therapy involves the use of nucleic acids, either DNA or RNA for the treatment, cure, or prevention of human diseases. Synthetic cationic polymers are promising as a tool for gene delivery because of their high level of design flexibility for biomaterial construction and are capable of binding and condensing DNA through electrostatic interactions. Our lab has developed a novel polymer (poly (polyethylene glycol-dodecanoate) (PEGD), a polyester of polyethylene glycol (PEG) and dodecanedioic acid (DDA). PEGD is a linear viscous polymer that self-assembles into a vesicle upon immersion in an aqueous solution. A copolymer of dodecanedioc acid and polyethylene glycol (PEG) was synthesized at a 1:1 ratio. Furmaric (FA) or itaconic acid (IA) was used to suppress DDA in the PEGD copolymer at an 80:20 ratio (DDA: furmaric/itaconic acid) to form the PEGDF/I variant. PEGDF/I are then modified through the Michael addition of Protamine Sulfate (PEGDF/I-PS) and Cys-Arg8 (PEGDF/I-CA) peptide to the carbon-carbon double bond on the polymer backbone to introduce a positive charge. The modified PEGDF/I polymers were capable of binding and condensing DNA. Transfection of HEK 293 cells with pTurboGFP plasmid using modified PEGDF/I polymers was successful but showed varied efficiency. The PEGDF/I-CA polymer had around 30% transfection efficiency and was shown to be non-cytotoxic.

Page generated in 0.5258 seconds