Spelling suggestions: "subject:"organicinorganic"" "subject:"organic:inorganic""
81 |
Sn0.9In0.1P2O7-Based Organic/Inorganic Composite Membranes : Application to Intermediate-Temperature Fuel CellsHibino, Takashi, Tomita, Atsuko, Sano, Mitsuru, Kamiya, Toshio, Nagao, Masahiro, Heo, Pilwon January 2007 (has links)
No description available.
|
82 |
Organically-Templated Open-Framework And Hybrid MaterialsBehera, Jogendra Nath 12 1900 (has links)
Open-framework inorganic and inorganic-organic hybrid materials constitute an important area of study in materials chemistry, because of their potential applications in areas such as sorption and catalysis. Besides aluminosilicate zeolites, the metal phosphates and carboxylates constitute large families of open-framework structures. The possibility of building open architectures with the sulfate and selenate anions as the basic building units has been explored in this thesis. Investigations of a variety of open-framework metal sulfates and selenates, as well as a family of jarosites of different transition metals are
presented. More importantly, studies directed towards the synthesis and understanding of the magnetic properties of various Kagome compounds formed by the transition metal ions is discussed at length.
After providing an introduction to inorganic open-framework compounds (Part 1), the thesis presents the results of the investigations of various transition and rare earth metal sulfates with diverse structures and dimensionalities in Part 2. Some of these compounds show interesting properties. For example, a two-dimensional Ni(II) sulfate exhibits ferrimagnetism whereas a three-dimensional Ni(II) sulfate with 10-membered channels is paramagnetic. A family of three-dimensional co-ordination polymers of Co(II) sulfate wherein the Co(II) sulfate layers are linked by diaminoalkanes of varying chain length has been synthesized and characterized. Organically-templated neodymium and thorium sulfates with layered and three-dimensional structure have also been prepared.
The jarosite family of compounds with the Kagome structure is considered as an
ideal model for studying frustrated magnetism. This type of materials, however, is difficult to prepare in a pure and highly crystalline form. We have synthesized analogues of the jarosite containing magnetic ions other than Fe3+ by solvothermal techniques and discussed them in Part 3. In particular, we have prepared and explored the magnetic properties of Mn2+(S = 5/2), Fe2+ (S = 2), Co2+(S = 3/2) and Ni2+ (S = 1) jarosites. Based on the results presented, it becomes clear that the magnetic properties vary with the spin of the transition metal ion. It appears that those Kagome compounds with transition metalions with non-integer spins show antiferromagnetic interactions and magnetic frustration while those with integer spins exhibit ferro/ferrimagnetic properties. A theoretical study has also supports this observation. We have been able to isolate for the first time 1,4-diazacubane as the part of the structure of the nickel Kagome compound.
The possibility of building open architectures with the selenate anion as the basic building unit has been explored in Part 4. The results have been rewarding and an organically-templated three-dimensional lanthanum selenate with 12-membered channels
has thus been obtained for the first time.
|
83 |
Synthesis and Characterization of Multifunctional Organic/ inorganic Hybrid Materials obtained by the "wet chemistry" approachKammoe, Astride Lorette 30 July 2015 (has links) (PDF)
Die vorliegende Arbeit fokussiert auf die Synthese von organisch/anorganischen Hybridmaterialien mit multifunktionalen Eigenschaften unter ausschliesslicher Darstellung dieser Materialen mit Hilfe des „wet chemistry“ Zugangs. Ausgehend von der Darstellung und Charakterisierung von isomorphen bzw. isostrukturellen Hybridmaterialien der allgemeinen Zusammensetzung catena-{[Me3NH][MCl3·2H2O]}n (Mtac) (MII = Mn, Co, Ni, Cu, tac = [Me3NH]Cl3·2H2O]) speziell mittels IR und UV/vis Spektroskopie ist beschrieben, wie sich aus diesen entsprechende bi-, tri-, und auch tetra-heterometallische Koordinationspolymere der allgemeinen Zusammenseztung {MxM´ytac}n, {MxM´yM´´ztac}n, {MxM´yM´´zM´´´ttac}n (MII = M ≠ M´≠ M´´≠ M´´´≠ M´´´´ und x, y, z, t als prozentualer Metallgehalt) herstellen lassen und welche limitierende Faktoren zu berücksichtigen sind. Leifähigkeitsmessungen an Einkristallen ausgewählter Koordinationspolymere werden vorgestellt. Zusätzlich werden die durch Rekristallisation von Nitac erhaltenen zwei verschiedenen Koordinationspolymere der Formel {[Me3NH]3{NiCl4}{NiCl3}}n und {[(Me3NH]{NiCl3}}n in Bezug auf ihre ungewöhnlichen strukturellen und magnetischen Eigenschaften vorgestellt und beschrieben.
Die durch Austausch von [Me3NH]+ Kationen gegen [Et3NH]+ bzw. protonierten aromatischen N-haltigen Kationen wie [2,2’-bipyH2]2+, [4,4’-bipyH2]2+ and [1,10-phenH2]2+ erhaltenen Reaktionsprodukte aus Umsetzungen mit Hilfe des “wet chemistry” Zugangs werden im Hinblick auf ihre Festkörperstrukturen beschrieben.
Die erfolgreiche Darstellung einer neuen Familie von perylentetracarboxylato-basierenden Komplexen, die teilweise hervorragende Löslichkeiten besitzen, wird beschrieben sowie die strukturellen, magnetischen und lumineszierenden Eigenschaften ausgewählter Vetreter. / The thesis presented here is focused on the synthesis of organic/ inorganic hybrid materials with multifunctional properties by means of the “wet chemistry” approach. The synthesis and characterization of hybrid materials with the general composition catena-{[Me3NH][MCl3·2H2O]}n (Mtac) (MII = Mn, Co, Ni, Cu, tac = [Me3NH]Cl3·2H2O]) is described. Due to their isomorphic and/ or isostructural character, bi-, tri-, and even tetra-heterometallic chains of the general formula {MxM´ytac}n, {MxM´yM´´ztac}n, {MxM´yM´´zM´´´ttac}n (MII = M ≠ M´≠ M´´≠ M´´´≠ M´´´´ and x, y, z, t is the percentage of each metal content) were synthesized and characterized. Limitating factors of the synthesis of these types of heterometallic coordination polymers are discussed. Furthermore, the conductive properties of selected representatives were investigated. Additionally, the products obtained from recrystallization of Nitac, two different novel 1D coordination polymers of the formula {[Me3NH]3{NiCl4}{NiCl3}}n and {[(Me3NH]{NiCl3}}n are described with respect to their structural and magnetic properties.
Efforts to replace the [Me3NH]+ cations of Mtac compounds by [Et3NH]+ cations as well as by protonated aromatic amines as [2,2’-bipyH2]2+, [4,4’-bipyH2]2+ and [1,10-phenH2]2+ are reported next with respect to the structural exploration of obtained hybrid materials by the “wet chemistry” approach.
Finally, the synthesis of a new family of perylene tetracarboxylate (ptc) based soluble complexes is reported. Structural, magnetic and luminescence properties of selected representatives of this new series of soluble ptc derivatives are reported.
|
84 |
Synthesis and Characterization of Multifunctional Organic/ inorganic Hybrid Materials obtained by the "wet chemistry" approachKammoe, Astride Lorette 31 July 2015 (has links) (PDF)
Die vorliegende Arbeit fokussiert auf die Synthese von organisch/anorganischen Hybridmaterialien mit multifunktionalen Eigenschaften unter ausschliesslicher Darstellung dieser Materialen mit Hilfe des „wet chemistry“ Zugangs. Ausgehend von der Darstellung und Charakterisierung von isomorphen bzw. isostrukturellen Hybridmaterialien der allgemeinen Zusammensetzung catena-{[Me3NH][MCl3·2H2O]}n (Mtac) (MII = Mn, Co, Ni, Cu, tac = [Me3NH]Cl3·2H2O]) speziell mittels IR und UV/vis Spektroskopie ist beschrieben, wie sich aus diesen entsprechende bi-, tri-, und auch tetra-heterometallische Koordinationspolymere der allgemeinen Zusammenseztung {MxM´ytac}n, {MxM´yM´´ztac}n, {MxM´yM´´zM´´´ttac}n (MII = M ≠ M´≠ M´´≠ M´´´≠ M´´´´ und x, y, z, t als prozentualer Metallgehalt) herstellen lassen und welche limitierende Faktoren zu berücksichtigen sind. Leifähigkeitsmessungen an Einkristallen ausgewählter Koordinationspolymere werden vorgestellt. Zusätzlich werden die durch Rekristallisation von Nitac erhaltenen zwei verschiedenen Koordinationspolymere der Formel {[Me3NH]3{NiCl4}{NiCl3}}n und {[(Me3NH]{NiCl3}}n in Bezug auf ihre ungewöhnlichen strukturellen und magnetischen Eigenschaften vorgestellt und beschrieben.
Die durch Austausch von [Me3NH]+ Kationen gegen [Et3NH]+ bzw. protonierten aromatischen N-haltigen Kationen wie [2,2’-bipyH2]2+, [4,4’-bipyH2]2+ and [1,10-phenH2]2+ erhaltenen Reaktionsprodukte aus Umsetzungen mit Hilfe des “wet chemistry” Zugangs werden im Hinblick auf ihre Festkörperstrukturen beschrieben.
Die erfolgreiche Darstellung einer neuen Familie von perylentetracarboxylato-basierenden Komplexen, die teilweise hervorragende Löslichkeiten besitzen, wird beschrieben sowie die strukturellen, magnetischen und lumineszierenden Eigenschaften ausgewählter Vetreter. / The thesis presented here is focused on the synthesis of organic/ inorganic hybrid materials with multifunctional properties by means of the “wet chemistry” approach. The synthesis and characterization of hybrid materials with the general composition catena-{[Me3NH][MCl3·2H2O]}n (Mtac) (MII = Mn, Co, Ni, Cu, tac = [Me3NH]Cl3·2H2O]) is described. Due to their isomorphic and/ or isostructural character, bi-, tri-, and even tetra-heterometallic chains of the general formula {MxM´ytac}n, {MxM´yM´´ztac}n, {MxM´yM´´zM´´´ttac}n (MII = M ≠ M´≠ M´´≠ M´´´≠ M´´´´ and x, y, z, t is the percentage of each metal content) were synthesized and characterized. Limitating factors of the synthesis of these types of heterometallic coordination polymers are discussed. Furthermore, the conductive properties of selected representatives were investigated. Additionally, the products obtained from recrystallization of Nitac, two different novel 1D coordination polymers of the formula {[Me3NH]3{NiCl4}{NiCl3}}n and {[(Me3NH]{NiCl3}}n are described with respect to their structural and magnetic properties.
Efforts to replace the [Me3NH]+ cations of Mtac compounds by [Et3NH]+ cations as well as by protonated aromatic amines as [2,2’-bipyH2]2+, [4,4’-bipyH2]2+ and [1,10-phenH2]2+ are reported next with respect to the structural exploration of obtained hybrid materials by the “wet chemistry” approach.
Finally, the synthesis of a new family of perylene tetracarboxylate (ptc) based soluble complexes is reported. Structural, magnetic and luminescence properties of selected representatives of this new series of soluble ptc derivatives are reported.
|
85 |
Study on RAFT polymerization and nano-structured hybrid system of POSS macromersDeng, Yuanming 08 June 2012 (has links) (PDF)
This work is generally aimed to synthesize POSS based BCPs via RAFT polymerization, to study their self-assembly behaviors, to research on the effect of POSS self-assembly structure on the bulk properties and to prepare nanostructured hybrid epoxy via self-assembly of POSS based copolymer. In Chapter1, We studied the RAFT polymerization of POSS macromers and capable to synthesize well defined POSS based BCPs with high POSS fraction and different topology such as AB,BAB and (BA)3. The vertex group and the morphology effect on thermo-mechanical properties of POSS based BCPs as well as the structure-property relationship was investigated. Dispersion RAFT polymerization in apolar solvent was applied and various aggregates with different morphology in Chapter2. Cooling induced reversible micelle formation and transition was found and the pathway selection in vesicle formation was investigated. Nano-construction of O/I hybrid epoxy materials based on POSS based copolymers was investigated in Chapter4. The effect of functional group content on miscibility of POSS based statistic copolymer and epoxy was investigated. A novel method to nanostructure epoxy hybrid involving self-assembly of POSS based BCPs in epoxy was presented. High homogeneity and well size/morphology control of core-corona structure containing rigid POSS core and soluble PMMA corona in networks were obtained.
|
86 |
Investigation of Zeolite Nucleation and Growth Using NMR SpectroscopyRivas Cardona, Alejandra 2011 December 1900 (has links)
Zeolite nucleation and growth is a complex problem that has been widely investigated but still not completely understood. However, a full understanding of this process is required in order to develop predictive models for the rational design and control of the zeolite properties. The primary objective of this dissertation is to determine the strength of organicinorganic interactions (i.e., the adsorption Gibbs energy) in transparent synthesis mixtures using PFG NMR spectroscopy, in order to provide more information for a better understanding of zeolite nucleation and growth.
Three main tasks were conducted in this work. The first was an investigation of the organocation role in precursor mixtures of silicalite-1, where the Gibbs energy of the organocation adsorption on the silica particles was determined at 25 degrees C. The findings showed that small changes in the adsorption Gibbs energy resulting from the differences in the molecular structure of the organocations lead to large changes in both the stability of the precursor particles and the rate of silicalite-1 formation. The second was an in situ PFG NMR investigation of silicalite-1 synthesis mixtures, where the adsorption Gibbs energy was determined at 25 degrees C and 70 degrees C, and the time evolution of silicalite-1 was monitored at synthesis conditions. The findings showed similar adsorption Gibbs energies at 25 degrees C and 70 degrees C. Also, a maximum in the organocation diffusion coefficients was observed during the time evolution of silicalite-1, which was associated with the exothermicendothermic transition occurring during the synthesis. The third was a systematic investigation of silicalite-1 precursor mixtures with varying degrees of dilution, where the effect of the composition of the mixtures on their conductivity, pH and particle size distribution (PSD) was studied. The results showed that conductivity, pH, and PSD are strongly affected by the mixture composition.
The main conclusion of this research is that the strength of the organic-inorganic interactions in transparent synthesis mixtures can be determined from experimental data of the organocation self-diffusion coefficients obtained with PFG NMR spectroscopy. The outcome information of this research should contribute to the development of a more detailed molecular-level description of the zeolite nucleation and growth, which is expected to allow the emergence of a new generation of materials by design.
|
87 |
Sensing and Transport Properties of Hybrid Organic/Inorganic DevicesVervacke, Céline 14 October 2014 (has links) (PDF)
Over the past two decades, organic semiconductors played a growing part as active layers in several electronic systems such as sensors, field‑effect transistors or light emitting diodes to cite a few. In fact, organic materials offer a high versatility and flexibility. However, pure organic systems often lack stability and robustness, which can be overcome by combining them with inorganic scaffolds.
In this work, a conducting polymer, polypyrrole (PPy) is employed to create new sensor elements based on the combination of both inorganic and organic layers. Electrical measurements, infrared spectroscopy and current sensing atomic force microscopy provides a better understanding of the polymer behavior upon immersion in aqueous solutions. The observed discharge in water leads to a straightforward application of the device as an in‑flow sensor for several acids like HCl, H2SO4 and H3PO4. The wide range of sensing concentrations as well as the low detection limit place the present detector among the best reported so far in the literature.
In a further step to turn towards lab‑in‑a‑tube devices, tubular‑shaped‑integrated microelectrodes are developed by using the rolled‑up technology. As a proof of concept, the successful integration of PPy as an active layer and its use as a gas sensor for volatile organic compounds (VOCs) is demonstrated.
Finally, by adapting the rolled‑up top electrodes, as developed by Bof Bufon et al. for self‑assembled monolayers (SAMs), thin PPy films (<50 nm) are vertically contacted and their electrical characteristics measured as a function of temperature and electric field. From the transport investigations, it is observed that an insulating‑to‑metallic transition occurs in the polymeric film by increasing the bias voltage. Other molecular layers like CuPc can be incorporated in these platforms, opening the way towards emerging organic devices.
|
88 |
Molecular Order and Dynamics in Nanostructured Materials by Solid-State NMRKharkov, Boris January 2015 (has links)
Organic-inorganic nanostructured composites are nowadays integrated in the field of material science and technology. They are used as advanced materials directly or as precursors to novel composites with potential applications in optics, mechanics, energy, catalysis and medicine. Many properties of these complex materials depend on conformational rearrangements in their inherently dynamic organic parts. The focus of this thesis is on the study of the molecular mobility in ordered nanostructured composites and lyotropic mesophases and also on the development of relevant solid-state NMR methodologies. In this work, a number of new experimental approaches were proposed for dipolar NMR spectroscopy for characterizing molecular dynamics with atomic-level resolution in complex solids and liquids. A new acquisition scheme for two-dimensional dipolar spectroscopy has been developed in order to expand the spectral window in the indirect dimension while using limited radio-frequency power. Selective decoupling of spin-1 nuclei for sign-sensitive determination of the heteronuclear dipolar coupling has been described. A new dipolar recoupling technique for rotating samples has been developed to achieve high dipolar resolution in a wide range of dipolar coupling strength. The experimental techniques developed herein are capable of delivering detailed model-independent information on molecular motional parameters that can be directly compared in different composites and their bulk analogs. Solid-state NMR has been applied to study the local molecular dynamics of surfactant molecules in nanostructured organic-inorganic composites of different morphologies. On the basis of the experimental profiles of local order parameters, physical motional models for the confined surfactant molecules were put forward. In layered materials, a number of motional modes of surfactant molecules were observed depending on sample composition. These modes ranged from essentially immobilized rigid states to highly flexible and anisotropically tumbling states. In ordered hexagonal silica, highly dynamic conformationally disordered chains with restricted motion of the segments close to the head group have been found. The results presented in this thesis provide a step towards the comprehensive characterization of the molecular states and understanding the great variability of the molecular assemblies in advanced nanostructured organic−inorganic composite materials. / <p>QC 20150225</p>
|
89 |
Hybrid Nanostructured Materials from Bile Acid Derived Supramolecular GelsChatterjee, Sayantan January 2017 (has links) (PDF)
Research activities towards the self-assembly of small organic molecules building blocks which lead to form supramolecular gel has increased extensively during the past two decades. The fundamental investigations of the morphological properties and the mechanical properties of these supramolecular gels are crucial for understanding gelation processes. Most supramolecular gelators were discovered by serendipity, but nowadays ratiional design of new gelators has become somewh at feasible. As a consequence, an increasing number of multi stimuli-responsive and functional molecular gels are reported, offering great prospects with myriads of applications includ ing drug delivery and smart materials as shown in scheme 1.
Scheme 1
Part 2: Synthesis of semiconductor nanocrystals
In the last two decades, the synthetic development of semiconductor col loidal nanocrystals has been extended from the adjustment of their size, shape, and composition of the particles at the molecular level. Such adjustments of nanocrystals at the molecula r level might open different fields of applications in materials and biological sciences. I n this chapter, the concept of the shape contr ol synthesis of colloidal nanocrystals with a narrow size distribution, and the synthesis of composition dependent alloy type mat erials are described (Scheme 2).
Scheme 2
Chapter 2: Synthesis of luminescent semiconductor nanocrystals
Part 1: Cadmium deoxycholate: a new and efficient precursor for high ly luminescent
CdSe nanocrystals
This part demonstrates the sy nthesis of Cadmium deoxycholate (CdDCh2), an efficient Cd-precursor for the synthesis of high quality, monodisperse, multi color emittting CdSe
Scheme 3
nanocrystals, while maintaining their high photoluminescent quantum efficiency (Scheme 3). The high thermal stability of CdDCh2 (decomposition temperature: 332 °C) was utilized to achieve high injection and growth temperatures (∼300 °C) for the syntheesis of red emitting nanocrystals with a sharp f ull width at half maximum (FWHM) and multiple excitonic absorption features. We believe that CdDCh2 can be useful for the prreparation of other nanomaterials such as CdS, CdTe and CdSe@CdS core-shell QDs.
Part 2: Ligand mediated exccited state carrier relaxation dynamics of Cd1-xZnxSe1-ySy NCs derived from bile salts
Bile salts of Cadmium and Zinc provide a convenient and inexpensive single step synthetic route for highly photoluminescent and stable semiconductor nanocrystals (NCs). The high thermal stabilities of Cadmium and Zinc deoxycholates (CdDCh2 and ZnDCh2) allowed us to fine-tune the synthesis of the NCs at high temperatures while maintaining the monodispersity, crystallinity and reproducibility (Scheme 4). Organic capping agent induced lattice strain affects the excited
Scheme 4
state relaxation processes of the NCs. The analysis of photoluminescence decay profiles revealed that the average lifettime decreased with the increasing lattice strain of the NCs. A kinetic stochastic model of photoexcited carrier relaxation dynamics of NCs was employed to estimate the values of the radiative recombination rates, the photoluminescence quenching rates and the non-radiative recombination rates of the NCs. These data showed that the non-radiative relaxation rates and the numbeer of surface trap states increased with the incrreasing lattice strain of the NCs. Such types of NCs can have great potential in nonlinear optics, photocatalysis and solar cells.
Chapter 3: Synthesis of organic-inorganic hybrid materials
Part 1: Hierarchical self-assembly of photoluminescent CdS nanoparticles into bile acid derived organogel: morphological and photophysical properties
In this part a strategy towards integrating photoluminescent semiconductor nanoparticles into a bio-surfactant derived organoggel has been reported. A facially amphiphilic bile thiol was used for capping CdS nanoparticless (NPs) which were embedded in a gel derived from a new bile acid organogelator in order to furnish a soft hybrid material (Scheme 5). The presence of CdS NPs in a well-ordered 1D array on the organogel network was confirmed using microscopic
Scheme 5
techniques. Photophysical stuudies of the gel–NP hybrid revealed resolved excitation and emission characteristics. Time resolved spectroscopic studies showed that the average lifetime value of the CdS NPs increased in the gel state compared to the sol phase. A kinetic model was utilized to obtain quantitative information about the different decay pathways of the photoexcited NPs in the sol and gel states.
Part 2: A novel strategy towards designing a CdSe quantum dot–metallohydrogel composite material
This section describes an efficiient method to disperse hydrophobic CdSe quaantum dots (QDs) in an aqueous phase using cetyltriimethylammonium bromide (CTAB) micelles without any surface ligand exchange. The water soluble QDs were then embedded in the 3D self-assembled fibrillar networks (SAFINs) of a hydrogel showing homogeneous dispersibility as eviidenced by
Scheme 6
optical and electron microscopico techniques (Scheme 6). The photophyssical studies of the hydrogel–QD from composite are reported for the first time. These composite materials may have potential applications in biology, optoelectronics, sensors, non-linear optics and materials science.
Part 3: Photophysical aspectts of self-assembled CdSe QD-organogel hyybrid and its thermoresponsive properties
A luminescent hybrid gel was constructed by incorporating CdSe quantuum dots (QDs) in a facially amphiphilic bile acid derived dimeric urea organogel throough non-covalent interaction between ligands capped on QDs surface and hydrophobic pockets of the gel (Scheme 7). The optical transparency of the hybrid materials and the dirrectionalities of the QDs in the gel medium were confirmed by photophysical and microscopic studies. The detailed excited state dynamics of the QD–organogel hybrid has been reported for the first time with the help of lifetime analysis and a kinetic decay model, and thee data revealed that the average lifetime of the QDs decreased in the gel medium. The reversible thermoresponsive behavior of the QD doped organogel was investigated by steady-state
fluorescence spectroscopy. W e believe that the results obtained herein provides a route to develop a thermoresponsive system for practical application, especially because of the spatial assembly between soft organic scaffolds and colloidal QDs.
Scheme 7
Part 4: In-situ formation of luminescent CdSe QDs in a metallohydrogel: a strategy towards synthesis, isolation, storage and re-dispersion of the QDs
A one step, in-situ, room temperature synthesis of yellow luminesce nt CdSe QD was achieved in a metallohydrog el derived from a facially amphiphilic bile salt, resulting in a QD-gel hybrid (Scheme 8). T he ordered self-assembly and homogeneous distribution of the CdSe QDs in the hydrogel network was observed from optical and electro n micrographs. The different excited state behav iors of the hybrid were revealed for the fir st time using time resolved spectroscopy. Ad ditionally, we described the successful isolation of the photoluminescent CdSe QDs from the gel followed by their re-dispersion in an organic solvent using suitable capping ligands.
Scheme 8
Chapter 4: Facially a mphiphilic bile acid derived meta llohydrogel: an efficient template for th e enantioselective Diels-Alder reactio n
An enantioselective Diels-Ald er reaction mediated by a facially amphiphilic bile acid derived metallogel scaffold has been a chieved (Scheme 9). Different hydrophobic domains present in Scheme 9
the gel appear to facilitate the enantioselective reaction. Various spectro scopic and electron microscopic techniques were employed to understand the possible reasons for the stereoselectivity in the gel. Subsequently, different counter anion s dependent rate accelerations and induced enantioselectivity in the ZnCh2 gel were studied in detail. These preliminary results of the non-covalent based supramolecular heterogeneous catalysis offer new possibilities for using metallogels as nanoreactors for different stereoselective reactions.
|
90 |
Preparação e caracterização de compósitos com matriz de poliuretano e híbridos fibrosos modificados com óxido de magnésio hidratado / Preparation and characterization of polyurethane based composites with hybrid fibrous modified by hydrous magnesium oxideThaís Carvalho 02 December 2016 (has links)
A versatilidade das espumas poliuretanas permite sua aplicação em inúmeros setores industriais, devido à possibilidade de se obter diferentes conjuntos de propriedades apenas alterando sua formulação básica. Um tipo recorrente de alteração é a incorporação de diferentes tipos de fibras em matrizes de poliuretano, vastamente estudada com o objetivo de gerar materiais compósitos com melhores propriedades mecânicas do que a matriz original. Inúmeros autores reportaram a utilização de celulose cristalina como uma alternativa renovável aos agentes de reforço e revelaram que a celulose utilizada como aditivo em matrizes poliméricas afetou as propriedades mecânicas da matriz original e, em menor escala, exerceu influência sobre a estabilidade térmica do compósito. O presente trabalho dedicou-se a isolar a celulose cristalina contida nas fibras de bananeira mediante tratamento com ácido acético concentrado. Os tratamentos químicos são necessários para modificar a superfície do material e melhorar a adesão do agente de reforço à matriz. Tendo em vista os resultados associados à estabilidade térmica dos compósitos de poliuretano reforçados com celulose, buscou-se sintetizar materiais híbridos de celulose e MgO.nH2O. Foi observado que, mesmo em pequenas quantidades, a presença do óxido hidratado de magnésio afetou significativamente a estabilidade térmica do HB 98:2. Estudos térmicos indicam que os materiais compósitos estudados apresentaram comportamento semelhante ao da matriz PU. Estudos das propriedades compressivas dos materiais poliméricos gerados mostraram que a incorporação do HB 98:2 ao PU afetou positivamente as propriedades mecânicas do material, sendo que o compósito PU + 1 HB 98:2 apresentou desempenho mecânico superior ao da matriz pura. / The versatility of polyurethanes foams allows its application in numerous industries because of the possibility of obtaining different sets of properties just by changing its basic formulation. A recurrent type of modification is the incorporation of different types of fibers in polyurethane matrices widely studied with the objective of generating composite materials with better mechanical properties than the original matrix. Numerous authors have reported the use of crystalline cellulose as a renewable alternative to fillers and showed that the cellulose used as additive in polymer matrices affect the mechanical properties of the original matrix and, to a lesser extent, influence upon thermal stability of the composite. This work was dedicated to isolate the crystalline cellulose contained in banana fibers by treatment with concentrated acetic acid. The chemical treatments are needed to modify the surface of the material and improve adhesion of the filler to the matrix. In view of the results associated with the thermal stability of the composite polyurethane reinforced with cellulose, sought to synthesize hybrid materials cellulose and MgO.nH2O. It has been observed that even in small quantities, the presence of hydrated magnesium oxide significantly affect the thermal stability of HB 98: 2. thermal studies indicate that the studied composites showed similar behavior to the PU matrix. Studies of the compressive properties of polymeric materials generated showed that the incorporation of HB 98: 2 to PU positively affect the mechanical properties of the material, and the composite PU + HB 98 1: 2 had mechanical performance superior to that of pure matrix.
|
Page generated in 0.0449 seconds