• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 11
  • Tagged with
  • 141
  • 141
  • 141
  • 100
  • 41
  • 41
  • 41
  • 21
  • 20
  • 20
  • 16
  • 15
  • 12
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Molecular Assembly of Monolayer-Protected Gold Nanoparticles and their Chemical, Thermal, and Ultrasonic Stabilities

Isaacs, Steven Ray 01 July 2018 (has links)
Gold monolayer-protected nanoclusters (MPCs) with average diameters of 1-5 nm protected by alkane- and arenethiolates were synthesized. Mixed-monolayer protected nanoparticles (MMPCs) were prepared by functionalizing hexanethiolate-protected MPCs with either 11-mercaptoundecanoic acid (MUA-MMPC), 11-mercaptoundecanol (MUO-MMPC), or 4-aminothiophenol (ATP-MMPC) using ligand place exchange. Presentation of various chemical reagents such as nucleophile, acid, or base and change in physical environment through ultrasonic and thermal irradiation resulted in changes to particles and their physical properties. Thermogravimetric analysis (TGA) was used to measure maximum temperature of the derivated thermogravimetric peaks (Tmax,DTG) as a means of comparing temperature dependence of mass loss. The absorption spectrum within the surface plasmon resonance (SPR) band was monitored over time throughout chemical and ultrasonic treatments to assess stability of these particles in solution. MUA-MMPCs and ATP-MMPCs were self-assembled with Cu2+, poly(sodium 4- styrenesufonate), poly(allylamine hydrochloride), generation 2 polyamidoamine dendrimer, and C60 fullerene as linking molecules on functionalized glass substrates using a layer-by-layer approach resulting in nanoparticle multi-layer films. The thin films were characterized using UV-vis spectroscopy during deposition, and then before and after chemical treatment, and thermal and ultrasonic irradiation to assess stability of nanocomposites. Finally, an in-situ cross-linking approach was used to deposit gold MPC-C60 thin film nanocomposite on functionalized glass substrate. UV-vis spectroscopy was used to monitor deposition rates of the resulting film in comparison with the MPC-C60 multilayer film assembled layer-by-layer. These MPC-C60 nanocomposites were also characterized using conductive atomic force microscopy (C-AFM).
32

Effectiveness of Thermal Oxidation in Relation to Anterior Cervical Plates

Miyashiro, Katherine A 01 January 2009 (has links)
Ti-6Al-4V anterior cervical plates (ACP) are used in spinal fusion surgeries to fixate cervical vertebrae during graft adhesion. However, documented cases of implant failure and the potential for ACP corrosion raise concerns regarding any degradation of material resulting from extended implantation. In addition, abrasion during implantation may damage a section of the protective oxide layer, potentially exposing surrounding tissues to the harmful effects of bare titanium, aluminum, and vanadium. Thermal oxidation has been shown to improve corrosion-resistance and wear-resistance, depending on temperature and time. To quantify the attributes of the thermally grown oxide layer, Ti-6Al-4V coupons underwent thermal oxidation treatments in an atmosphere environment at 600 and 675 ˚C for 1, 4, 8, and 16 hours. Two sample types were produced: non-abraded and abraded. Non-abraded samples underwent potentiodynamic polarization according to ASTM F2129, which included open circuit potential tests. Open circuit potentials (EOC) increased with increasing treatment time, indicating that longer treatment time resulted in thicker oxides. All samples treated at 675˚C displayed higher EOC than samples treated at 600˚C, indicating an increase in oxide thickness with higher temperature. During the first hour of treatment at 675˚C, the rate of oxide growth was greater than the rate of oxide growth of all samples treated at 600˚C. Samples treated at 600˚C for 4 and 8 hours displayed pitting during potentiodynamic polarization, but all other samples withstood the applied potentials and surfaces were further passivated. To simulate damage during surgery, a single abrasion was made across samples in the abraded group with a diamond-tip indenter under a load of 471g at 4.4 mm/s. Abraded samples were subjected to potential-step tests to assess repassivation ability after abrasion. All samples displayed repassivation ability, except for the sample treated at 600˚C for 4 hours. Surface roughness was measured with atomic force microscopy before and after thermal oxidation treatments. Lower surface roughness was desired to discourage osseointegration, or the growth of bone cells. No isothermal surface roughness trends were observed, as high surface roughness outliers were seen in samples treated at 675˚C for 8 hours and 600˚C for 4 hours. Rockwell hardness and Vickers microhardness were also measured to assess bulk changes in mechanical properties and hardness of the oxidized surfaces. No statistical change was seen in Rockwell hardness. Vickers hardness increased with increasing temperature and time, with the exception of the sample treated at 600˚C for 4 hours. Metallography of the thermally oxidized samples was analyzed to determine if a change in microstructure had occurred due to thermal processing. No major change in grain size or the amount of alpha and beta grains was seen in samples treated at 600˚C, but samples treated for extended times at 675˚C showed equiaxed enlarged alpha grains and a reduction in beta grains. The breakdown of samples treated at 600˚C exemplified possible differences in the alpha-beta oxide behavior during thermal oxidation and corrosion. Outlying surface roughness and microhardness values related to the thermal oxidation treatments and resulting oxide structure. Due to delamination of oxides grown at 675˚C for 4, 8, and 16 hours, the treatment parameters would not be effective in the ACP application. Therefore, through corrosion resistance, repassivation ability, low surface roughness, increased microhardness, and no microstructural change, thermal oxidation treatments at 600˚C for more than 16 hours, and 675˚C for 1 hour or less would be suitable treatments for anterior cervical plates.
33

The Effects of Applied Strain and Heat Treatment on the Properties of NiTi Wire During Shape Setting

Zapoticla, Frank 01 August 2010 (has links)
NiTi components are commonly subjected to thermo-mechanical heat treatments during production and fabrication. This study investigates the effects of applied strain of 0-10% and heat treatments of 300-600ºC for times of 2-30 minutes during shape-setting of Ti–50.8 at% Ni wire with a nominal diameter of 0.495 mm and an initial transition temperature, Af, of 12ºC. Strain was applied prior to heat treatments by coiling NiTi wire, essentially producing coiled springs, around different diameter steel mandrels to obtain different strain levels. The samples of NiTi wire under applied strain were heat treated in a salt bath, followed by a rapid quench. Transformation temperatures and mechanical properties were characterized using the differential scanning calorimeter and tensile tests. Changes in the Af, UTS, and elastic modulus due to ageing processes and applied strain were observed. Following theory, precipitation rates of Ni-rich phases generally increased with increased temperature (up to a certain point), time and applied strain levels. Reaction rates to achieve a particular Af might be faster than expected if the sample is under strain during the shape-setting process. Due to precipitation strengthening, an increase in UTS with increased heat treatment time was observed between 300-450°C; annealing processes dominate at higher temperatures, resulting in a decrease in UTS above 500°C. A decrease in UTS with increasing level of applied strain was observed. Trends in elastic modulus were highly inconsistent in this study. As shown by this study, applied strain in NiTi during heat treatment affects the Af and mechanical properties.
34

Deposition, Characterization, and Fabrication of a Zinc Oxide Piezoelectric Thin Film Microspeaker Using DC Reactive Sputtering

Olzick, Adam 01 June 2012 (has links)
A piezoelectric microspeaker device that could be used in a variety of acoustic applications was designed and fabricated using a thin film ZnO layer that was reactively DC sputtered onto a single crystalline n-type silicon substrate. When tested the microspeaker did not produce sound due to complications in the etching process, the thickness of the diaphragms, and clamping effects. Instead, a characterization approach was taken and the structural, optical, electrical, and piezoelectric properties of the ZnO were investigated. Scanning electron microscopy, x-ray diffraction, and atomic force microscopy were utilized to discover the ZnO’s structural properties. Using the XRD and SEM, the as-sputtered ZnO films were found to have highly c-axis oriented columnar crystals. Optical properties were determined from the reflectance spectrums obtained from a Filmetrics F20 reflectometer and were used to determine the film thickness, the optical constants, and the optical band gap of the ZnO thin films. Using a four-point probe, the as-sputtered ZnO films were found to be highly resistive and insulative, mainly due to voided growth boundaries between the crystals. To improve electrical conductivity and piezoelectric response, ZnO samples were annealed at varying temperatures in a nitrogen environment. The annealing process successfully increased the electrical conductivity and piezoelectric properties of the films. The local piezoelectric properties of the ZnO were discovered with an Asylum MFP-3D and a piezoresponse force microscopy (PFM) technique called DART-PFM. The ZnO films that were sputtered with 70 watts and an argon to oxygen gas ratio of 2:1 were found to have the highest d33 piezoelectric coefficients. The ZnO sample that was annealed at 600°C for 30 minutes had the highest overall d33 value of 4.0 pm/V, which means that the 600°C annealed ZnO films would have the best chance of making a functional microspeaker.
35

Nanoindentation of Annealed and As-Sputtered Thin Films of Nickel Titanium Shape Memory Alloys

Lewis, Matthew Tyson 01 October 2010 (has links)
The bottom-up processing techniques used for making Microelectromechanical systems (MEMS) devices can produce material properties different from bulk processing. The material properties must be evaluated with the process parameters used and for changes in the process parameters. The mechanical properties are needed to design MEMS devices. A material of interest for MEMS devices is nickel titanium (NiTi) shape memory alloy (SMA) because of the high work output (~107 J/m3). This thesis will focus on the fabrication of thin film NiTi by DC magnetron sputtering deposition and testing mechanical properties of the fabricated films by nanoindentation. Thin film NiTi SMA was successfully created by DC magnetron sputtering deposition and high vacuum annealing in the Microfabrication Laboratory at California Polytechnic State University – San Luis Obispo. Characterization of the thin film by nanoindentation produced an elastic modulus of the thin film NiTi SMA with the developed processing parameters was 67.9 GPa with a hardness of 2.1 GPa. The measured thin film NiTi elastic modulus was greater than bulk NiTi of 40 GPa because of the residual stress from the deposition process. The shape memory effect was evaluated at the nanometer scale by measuring the nanoindents before and after thermally inducing a phase transformation. A maximum indentation depth recovery of 58% was measured upon the heat induced martensitic phase transformation. The low recovery was attributed to the high strain of 8% induced by the Berkovich tip. The effects of deposition power on the NiTi as-sputtered film stress, elastic modulus, hardness, and electrical conductivity were evaluated. At the highest sputtering deposition power of 450 Watts, an elastic modulus of 186 GPa with a hardness of 8.3 GPa was measured by nanoindentation. An increase in deposition power increased the residual film compressive stress, elastic modulus, and hardness while the electrical resistivity increased. The mechanisms for the measured properties are discussed in this thesis.
36

Tribological Comparison of Traditional and Advanced Firearm Coatings

Boban, Greg 01 July 2010 (has links)
The objective of this project is to find which type of coating has the best performance characteristics for finishing firearms. This is accomplished by measuring and comparing several performance characteristics, such as: adhesion, hardness, wear resistance, friction control, and corrosion resistance. Appearance is not a factor since any exterior coating that is flashy can be subdued or camouflaged with special purpose paints, which have proven durable enough for such purposes. Cost will not be a limiting factor for this experiment, but will be discussed in the conclusion as a secondary concern. This data will be used to identify the best coating for steel and aluminum firearm parts. The goal is to lengthen a firearm’s life cycle while increasing performance and reliability by applying the best coating.
37

The Catalytic Performance of Lithium Oxygen Battery Cathodes

Chawla, Neha 23 May 2018 (has links)
High energy density batteries have garnered much attention in recent years due to their demand in electric vehicles. Lithium-oxygen (Li-O2) batteries are becoming some of the most promising energy storage and conversion technologies due to their ultra-high energy density. They are still in the infancy stage of development and there are many challenges needing to be overcome before their practical commercial application. Some of these challenges include low round-trip efficiency, lower than theoretical capacity, and poor rechargeability. Most of these issued stem from the poor catalytic performance of the cathode that leads to a high overpotential of the battery. In this doctoral work, Li-O2 cathodes containing nanoparticles of palladium were used to alleviate this problem. Cathodes composed of palladium-coated and palladium-filled carbon nanotubes (CNTs) were prepared and investigated for their battery performance. The full discharge of batteries showed 6-fold increase in the first discharge of the Pdfilled over the pristine CNTs and 35% increase over their Pd-coated counterparts. The Pd-filled CNTs also exhibited improved cyclability with 58 full cycles of 500 mAh·g-1 at current density of 250 mA·g-1 versus 35 and 43 cycles for pristine and Pd-coated CNTs, respectively. The effect of encapsulating the Pd catalysts inside the CNTs proved to increase the stability of the electrolyte during both discharging and charging. Voltammetry, Raman spectroscopy, XRD, UV/Vis spectroscopy, and visual inspection of the discharge products using scanning electron microscopy confirmed the increased stability of the electrolyte due catalyst shielding. The electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on carbon nanotubes (CNT) cathodes with palladium (Pd) catalyst, Pd-coated CNT and Pd-filled CNT, have been evaluated in an ether-based electrolyte solution to develop a lithium oxygen (Li−O2) battery with a high specific energy. The electrochemical properties of CNT cathodes were studied using electrochemical impedance spectroscopy (EIS). The infrared spectroscopy and SEM are employed to analyze the reaction products adsorbed on the electrode surface of the Li-O2 battery developed using Pd-coated and Pd-filled CNTs as cathode and an ether based electrolyte. vii Studies in this dissertation conclude that the use of nanocatalysts composed of palladium improved the overall performance of the Li-O2 batteries, while shielding these catalysts from direct contact with the electrolyte prolonged the life of the battery by stabilizing the electrolyte.
38

Photochromic molecules in polymer switch diodes

Tai, Feng-i January 2006 (has links)
<p>Photochromism has been investigated extensively during recent years. The large interest for information storage in memory applications is associated with the bi-stable character of the photochromism phenomena. In molecular photochromics, two isomers with different absorption spectrum can be obtained according to the specific wavelength of the light exposure. This reversible transformation process can be considered as optical writing/erasing step of a memory.</p><p>Here we first report the absorption spectra of solid-state films based on the blends consisting of PC molecules, the spirooxazine 1,3-dihydro-1,3,3-trimethylspiro[2H-indole-2,3’-[3H]phenanthr[9,10-b](1,4)oxazine] (PIII, Sigma-Aldrich, 32,256-3) and a polymer matrix host, poly(2-methoxy-5(2’-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV). The bi-stability in conjugated polymer matrix is studied by following the time evolution of the optical properties of the blends.</p><p>Thereafter, the electrical performance of PC-polymer diodes is characterized and reported. While the PIII molecules in the blend bulks are switched to their low energy gap state, forming external energy levels above the valence band of MEH-PPV, the injected charges (hole-dominated) will be trapped by the low energy gap isomer of PIII and that leads to current modulation. PIII molecules can be switched between two energy gap states upon the photo-stimulation, and the I-V characteristics of the device can also be controlled reversibly via the photoisomerization. The retention time of the diode’s electrical switching fits quite well with the absorption characteristics of the blend films; this correspondence builds a good link between the film property and the device behavior.</p><p>Furthermore, we observed a two-trap system in the blend diodes from the I-V curves, and a model is proposed which can explain the schematic concept of the trap-limited current modulation. To combine the knowledge and information from the investigations above, we tested a novel device design based on a bi-layer of the PC and polymer materials, and the promising result for future work is presented in the end.</p>
39

Biomass Briquettes in Malawi

Faxälv, Olle, Nyström, Olof January 2007 (has links)
<p>In Malawi 2.5 % of the forest disappears each year. The use of firewood and charcoal, deriving from forest resources,</p><p>accounts for about 99 % of the household energy demand in Malawi and is a cause to the deforestation. The Government of</p><p>Malawi recently launched a programme called Promotion of Alternative Energy Sources Programme (PAESP) with the aim</p><p>to reduce the use of firewood and charcoal. One of the fuels included in the programme is the biomass briquette. The aim</p><p>with this study is to evaluate the viability of biomass briquettes as a sustainable alternative energy source to firewood and</p><p>charcoal for households in Malawi.</p><p>Research for the study was carried out during three months in Malawi. Visits were made to a number of briquette</p><p>production sites to study the manufacturing methods and to collect briquette samples. The briquettes were tested using</p><p>various methods and then compared with results for firewood and charcoal.</p><p>At the moment various production methods are used in Malawi, with a high difference in technical complexity and cost.</p><p>Machines produced from wood using very basic mechanics can apply similar pressure as more advanced metal pressers.</p><p>They also seem to be better suited than those made of metal, in terms of price and availability.</p><p>The majority of the briquette producers in Malawi use waste paper as base material. Although the paper briquettes are good,</p><p>other raw materials will be needed if the production is supposed to be significantly increased.</p><p>The briquettes burn well using the most common stoves in Malawi, including the commonly used charcoal stove. While</p><p>firewood is cheaper to use than other available fuels, the briquettes seem to be able to compete with the fuel costs for</p><p>charcoal.</p>
40

Vad händer när mode påverkar möbeldesign? : En kollektion strandmöbler och badkläder

Lindahl, Veronica January 2007 (has links)
<p>Rapporten beskriver ett designprojekt, som är en del av examensarbetet på 15p, Vad händer när mode påverkar möbeldesign? En kollektion strandmöbler och badkläder, utfört av Veronica Lindahl, avgångsstudent på utbildningsprogrammet möbeldesign på Carl Malmsten, Centrum för Träteknik & Design vid Linköpings universitet. Syftet med denna rapport är att beskriva processen av detta examensarbete.</p><p>Valet av produkter tog avstamp från min bakgrund i Halmstad. En möbel för stranden och något att ha på sig. Att koppla samman mode och möbeldesign tilltalar mig. Målet var att produkterna skulle komplettera och inspirera varandra. Att tänka på hur produkterna skulle presenteras var också en del i arbetet.</p><p>Upplägget i denna rapport är enligt ordningen i min designprocess. Det börjar med en insamlingsetapp. Efter detta följer en lång skissetapp, därefter material, tillverkning och slutligen en resultatanalys med tankar och reflektioner över vad jag kommit fram till.</p><p>Arbetet startade med samtal med handledaren Daniel Östman, där vi diskuterade val av examensarbete samt vad jag ville få ut av arbetet. Jag valde att göra ett projekt med mig som uppdragsgivare, eftersom det är så jag vill arbeta i framtiden.</p><p>Ledorden i mitt arbete har varit modedesigns påverkan på möbeldesign, en möbel för stranden och något att ha på sig, trä och tyg, material som klarar utomhusklimatet.</p><p>Resultatet är en funktionell, bärbar strandstol med två lägen som är lätt, går att fälla ihop och kan bäras på ryggen. Detta är en produkt som jag skulle vilja se på stranden.</p><p>Detsamma gäller badplaggen, de väcker nyfikenhet och är ett mer påklätt badmode.</p><p>Vid presentationen av produkterna använde jag mig av en stiliserad strand som gav en känsla av hur produkterna skulle användas i den miljö de var avsedda för.</p><p>I framtiden vill jag arbeta med att kombinera modeskapande och möbeldesign. Jag har upptäckt många intressanta möjligheter och uppslag i vad som händer när mode påverkar möbeldesign.</p>

Page generated in 0.1307 seconds