• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 11
  • Tagged with
  • 141
  • 141
  • 141
  • 100
  • 41
  • 41
  • 41
  • 21
  • 20
  • 20
  • 16
  • 15
  • 12
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Arbetsmöbel för ungdomar : Beskrivning av designprocessen i ett samarbete med IKEA

Leckström, Anna January 2007 (has links)
<p>Rapporten beskriver ett designprojekt, utfört som en del av examensarbetet på</p><p>15 HP, jag utfört som avgångsstudent på möbeldesignprogrammet vid Carl Malmsten Centrum för Träteknik & Design.</p><p>Från Ronnie Runesson, produktutvecklare på IKEA of Sweden, fick jag ett uppdrag, ett reellt projekt att arbeta med. Projektet handlade om att ta fram ett koncept på en ny typ av arbetsmöbel för ungdomar i åldersgruppen 12 – 18 år.</p><p>Målet med projektet var att, förutom att leverera ett fungerande koncept till IKEA, sätta min designmetodik på prov med hjälp av ett konkret designprojekt samt att vid projektets slut analysera den.</p><p>Rapporten har en beskrivande karaktär där jag berättar om de olika etapper arbetet utförts efter: Etapp 1- Koncept- och instuderingsetapp, Etapp 2- Vidareutvecklingsetapp, Etapp 3- Konkretisering av produkt. Beskrivningen förljer en kronologisk ordning för att underlätta läsarens förståelse för designprocessens gång.</p><p>Rapporten illustreras av ett fyrtiotal bildfigurer som visar delar ur mitt skiss- och gestaltningsarbete.</p><p>Rapporten avslutas med en analys av projektet samt den designmetodik jag använt mig av.</p> / <p>This report describes a design project (within a graduation project worth 15 points) that I completed during my final year as a student in the furniture design program at the Carl Malmsten Centre for Wood Technology and Design.</p><p>I received a commission from Ronnie Runesson, product developer at IKEA of Sweden, to develop an actual project to work with. The project was about creating a concept for a new type of desk for adolescences between the ages of 12 and 18.</p><p>The aim of the project was to, apart from deliver a working concept to IKEA, try out my design methodology with the aid of a concrete design project and at the end of the project create an analysis of it.</p><p>The character of the report is descriptive and in it I describe the different phases I worked with: Phase 1- Concept and Research Phase, Phase 2- Further Development Phase,</p><p>Phase 3- Realisation of Product. To facilitate the reader’s understanding of the design process the description follows a chronological order.</p><p>The report contains some forty images, showing parts of my sketch work.</p><p>The report ends with an analysis of the project and the design methodology I used.</p>
42

Acoustic Emission and X-Ray Diffraction Techniques for the In Situ Study of Electrochemical Energy Storage Materials

Rhodes, Kevin James 01 August 2011 (has links)
Current demands on lithium ion battery (LIB) technology include high capacity retention over a life time of many charge and discharge cycles. Maximizing battery longevity is still a major challenge partly due to electrode degradation as a function of repeated cycling. The intercalation of lithium ions into an active material causes the development of stress and strain in active electrode materials which can result in fracture and shifting that can in turn lead to capacity fade and eventual cell failure. The processes leading to active material degradation in cycling LIBs has been studied using a combination of acoustic emission (AE) and in situ X-ray diffraction (XRD) techniques. Safe, low cost custom electrochemical cells were designed and developed for use in battery AE and XRD experiments. These tools were used to monitor the time of material fracture through AE and link these events to lattice strain and phase composition as determined by XRD. Both anode and cathode materials were studied with an emphasis on graphite, silicon, and Li(Mn1.5Ni0.5)O4, and tin. A thermal analogy model for lithiation/delithiation induced fracture of spherical particles capable of predicting when AE should be detected in a cell containing a composite silicon electrode. The results of this work were used to develop an understanding of when and how active materials are degrading as well as to suggest methods of improving their performance and operational longevity.
43

Study Of Mechanical Behaviors and Structures of Bulk Metallic Glasses with High-energy Synchrotron X-Ray Diffraction

Jiang, Feng 01 August 2011 (has links)
This dissertation addresses two critical issues in the mechanical behaviors and structures of bulk-metallic glasses (BMGs): (1) the effect of composition, fabrication method, and pretreatment of plastic deformation on mechanical properties and structures of BMGs; (2) the mechanical response and structural evolution of BMGs in the elastic and plastic region. (Cu50Zr50)94Al6 and (Cu50Zr50)92Al8 amorphous alloys were used to study the effect of composition on mechanical properties and structures of BMGs. The (Cu50Zr50)94Al6 alloy exhibits lower yield stress and Young’s modulus, higher Poisson’s ratio, worse thermal stability, and better plasticity than (Cu50Zr50)92Al8. Both the topological and chemical effects of Al addition account for the differences of mechanical and physical properties between them. A Zr55Ni5Al10Cu30 glass-forming alloy with injection casting (the melting temperatures are 1,550 K and 1,250 K, respectively) and with suction casting was fabricated. The results indicate that despite their amorphous structures, the suction-casting samples exhibit a lower yield stress, lower Young’s modulus, and larger plastic strain than the injection-casting samples (the melting temperature is 1,550 K) due to more quenched-in free volumes in suction casting, which results from the higher cooling rate. The inhomogeneous plastic deformation in Zr50Cu40Al10 BMG samples was introduced by four-point-bend fatigue. There is almost no difference of the stress-strain behaviors between the deformed and undeformed samples. Elastostatic compression was used to introduce homogeneous deformation in Zr70Cu6Ni16Al8 BMG samples. The preloaded samples are softer with decreases of yield strength and Young’s moduli. Anisotropy was observed in the preloaded samples despite their small magnitudes, which even occurred at a relatively low temperature and applied stress level. The structural evolution of Zr70Cu6Ni16Al8 BMG in the elastic region was analyzed with anisotropic pair density function. The analysis of the first shell of Zr70Cu6Ni16Al8 glass confirms the structural changes in the elastic region. The bond reorientation leads to direction dependent changes in the chemical short-range order. The structural evolution in the plastic region of Zr70Cu6Ni16Al8 BMG is investigated as well. The serrations were observed for both the stress-displacement and full width at half maximum-displacement curves. The excess free volume was measured, which increases with increasing the displacement.
44

Elastic and Magnetic Properties of Tb6Fe(Sb,Bi)2 Using Resonant Ultrasound Spectroscopy.

McCarthy, David Michael 01 August 2010 (has links)
Tb6FeSb2 and Tb6FeBi2 are novel rare earth compounds with little prior research. These compounds show high and variable curie temperatures for rare-earth compounds. This has lead to a literature review which includes the discussion of: elasticity, resonance, and magnetism. This review is used to discuss the theory and methodology which can relate these various properties to each other. Furthermore, synthesis, x-ray analysis, and RUS sample preparation of Tb6FeSb2 and Tb6FeBi2 were completed. Resonant Ultrasound Spectroscopy (RUS) elastic studies were taken for Tb6FeSb2 and Tb6FeBi2 as a function temperature from 5-300K, in various magnetic fields ranging from 0-9T. Tb6FeSb2’s and Tb6FeBi2’s elastic moduli are related to their magnetic properties. Magnetization data, primarily M v. H, provides another measure the magnetic properties are used to help correlate the data to elasticity. Tb6FeSb2 and Tb6FeBi2 Curie temperatures are 253(3)K and 246(5)K respectively. The low temperature magnetic transition of Tb6FeSb2 is 65-90K and Tb6FeBi2 is 55-75K. RUS suggests that this low temperature transition is somehow related to a structural transition but this transition does not occur in these two compounds. Co-substitution of Tb6FeSb2 and Tb6FeBi2 seem to greatly affect this lower temperature transition in RUS. It does not greatly effect the curie temperature. Low temperature XRD shows that Co-substitution also creates a structural transition in this family of compounds.
45

Phase equilibria and thermodynamic properties of high-alloy tool steels : theoretical and experimental approach

Bratberg, Johan January 2005 (has links)
The recent development of tool steels and high-speed steels has led to a significant increase in alloy additions, such as Co, Cr, Mo, N, V, and W. Knowledge about the phase relations in these multicomponent alloys, that is, the relative stability between different carbides or the solubility of different elements in the carbides and in the matrix phase, is essential for understanding the behaviour of these alloys in heat treatments. This information is also the basis for improving the properties or designing new alloys by controlling the amount of alloying elements. Thermodynamic calculations together with a thermodynamic database is a very powerful and important tool for alloy development of new tool steels and high-speed steels. By thermodynamic calculations one can easily predict how different amounts of alloying elements influence on the stability of different phases. Phase fractions of the individual phases and the solubility of different elements in the phases can be predicted quickly. Thermodynamic calculations can also be used to find optimised processing temperatures, e.g. for different heat treatments. Combining thermodynamic calculations with kinetic modelling one can also predict the microstructure evolution in different processes such as solidification, dissolution heat treatments, carbide coarsening, and the important tempering step producing secondary carbides. The quality of predictions based on thermodynamic calculations directly depends on the accuracy of the thermodynamic database used. In the present work new experimental phase equilibria information, both in model alloys containing few elements and in commercial alloys, has been determined and was used to evaluate and improve the thermodynamic description. This new experimental investigation was necessary because important information concerning the different carbide systems in tool steels and high-speed steels were lacking. A new thermodynamic database for tool steels and high-speed steels, TOOL05, has been developed within this thesis. With the new database it is possible to calculate thermodynamic properties and phase equilibria with high accuracy and good reliability. Compared with the previous thermodynamic description the improvements are significant. In addition the composition range of different alloying elements, where reliable results are obtained with the new thermodynamic database, have been widened significantly. As the available kinetic data did not always predict results in agreement with new experiments the database was modified in the present work. By coupling the new thermodynamic description with the new kinetic description accurate diffusion simulations can be performed for carbide coarsening, carbide dissolution and micro segregation during solidification. / QC 20100929
46

Aktivitetsbassäng i FHC Laholmskommun - tillståndsanalys

Senagic, Aida January 2010 (has links)
Simbassängen i Folkhälsocentrum i Laholm har drabbats av skador. Läckage i skvalprännorna har orsakat problem i de övriga konstruktionsdelarna. Laholmskommun har år 2002 vidtagit akuta åtgärder i hopp om att stoppa läckage och förebygga ännu större skador. Reparationsarbetet utfördes och efter två år konstaterades fortsatt läckage.För att kunna bedömma skadornas omfattning och orsak utförs en tillståndsbedömning av befintlig konstruktion. Tillståndsbedömningen kommer att ligga till grund för val av reparationsmetoder och reparationsomfattning. Det största problemet är armeringskorrosion föranled av karbonatisering och kloridinträngning. Hela konstruktionen befinner sig i en väldigt aggressiv miljö som accelererar hela nedbrytningsprocessen. Genom att göra okulärbesiktning och laboratorieanalys har jag kommit fram till att skadorna är omfattande och reparationsarbeten kommer att vara därefter.
47

Arbetsmöbel för ungdomar : Beskrivning av designprocessen i ett samarbete med IKEA

Leckström, Anna January 2007 (has links)
Rapporten beskriver ett designprojekt, utfört som en del av examensarbetet på 15 HP, jag utfört som avgångsstudent på möbeldesignprogrammet vid Carl Malmsten Centrum för Träteknik &amp; Design. Från Ronnie Runesson, produktutvecklare på IKEA of Sweden, fick jag ett uppdrag, ett reellt projekt att arbeta med. Projektet handlade om att ta fram ett koncept på en ny typ av arbetsmöbel för ungdomar i åldersgruppen 12 – 18 år. Målet med projektet var att, förutom att leverera ett fungerande koncept till IKEA, sätta min designmetodik på prov med hjälp av ett konkret designprojekt samt att vid projektets slut analysera den. Rapporten har en beskrivande karaktär där jag berättar om de olika etapper arbetet utförts efter: Etapp 1- Koncept- och instuderingsetapp, Etapp 2- Vidareutvecklingsetapp, Etapp 3- Konkretisering av produkt. Beskrivningen förljer en kronologisk ordning för att underlätta läsarens förståelse för designprocessens gång. Rapporten illustreras av ett fyrtiotal bildfigurer som visar delar ur mitt skiss- och gestaltningsarbete. Rapporten avslutas med en analys av projektet samt den designmetodik jag använt mig av. / This report describes a design project (within a graduation project worth 15 points) that I completed during my final year as a student in the furniture design program at the Carl Malmsten Centre for Wood Technology and Design. I received a commission from Ronnie Runesson, product developer at IKEA of Sweden, to develop an actual project to work with. The project was about creating a concept for a new type of desk for adolescences between the ages of 12 and 18. The aim of the project was to, apart from deliver a working concept to IKEA, try out my design methodology with the aid of a concrete design project and at the end of the project create an analysis of it. The character of the report is descriptive and in it I describe the different phases I worked with: Phase 1- Concept and Research Phase, Phase 2- Further Development Phase, Phase 3- Realisation of Product. To facilitate the reader’s understanding of the design process the description follows a chronological order. The report contains some forty images, showing parts of my sketch work. The report ends with an analysis of the project and the design methodology I used.
48

Slag inclusion formation during solidification of steel alloys and in cast iron

Adolfi, Sofia January 2007 (has links)
<p>This thesis explores the formation of segregation and inclusions during solidification of steel and cast iron. A better understanding of the formation mechanism should result in decreasing fraction of defects during solidification of ingot and strand material.</p><p>Density driven macrosegregation was studied both experimentally and theoretically to see the effect of channel segregation on the total segregation. Formation of these pencil-like segregations is due to natural convection in the solidifying metal caused by liquid enrichment of elements with lower density compared to the bulk. It is suggested to change the composition to compensate for this density difference.</p><p>Inclusion precipitation can be finite by limitations in segregation. Saturated liquid is found in the last solidified areas, often between dendrites. Here the enrichment of the liquid is possible due to microsegregation. Meanwhile crystals form and solidify the elements with low solubility in the solid is pushed out in the remaining liquid. Soon the liquid is saturated to the level where spontaneous formation of inclusions occurs. Microstructure studies by aid of SEM and micro-probe measurements are analysed to find at what point during solidification process the inclusions start to form. In steel making this formation has a detrimental effect on the mechanical properties in contrary to the production of nodular cast iron where the inclusions have a beneficial effect on the graphite formation.</p><p>Inoculation of cast iron aims at reaching higher number density of graphite nodules, nodule morphology modification and control of nodule distribution during solidification. Late precipitation of nucleation sites has shown to have a positive impact on preventing chill. To find the most potent inoculation agent different additives were tested. Special effort has been made to analyse the effect of oxides and sulphides as nucleation sites.</p>
49

Elastic and Magnetic Properties of Tb6Fe(Sb,Bi)2 Using Resonant Ultrasound Spectroscopy.

McCarthy, David Michael 01 August 2010 (has links)
Tb6FeSb2 and Tb6FeBi2 are novel rare earth compounds with little prior research. These compounds show high and variable curie temperatures for rare-earth compounds. This has lead to a literature review which includes the discussion of: elasticity, resonance, and magnetism. This review is used to discuss the theory and methodology which can relate these various properties to each other. Furthermore, synthesis, x-ray analysis, and RUS sample preparation of Tb6FeSb2 and Tb6FeBi2 were completed. Resonant Ultrasound Spectroscopy (RUS) elastic studies were taken for Tb6FeSb2 and Tb6FeBi2 as a function temperature from 5-300K, in various magnetic fields ranging from 0-9T. Tb6FeSb2’s and Tb6FeBi2’s elastic moduli are related to their magnetic properties. Magnetization data, primarily M v. H, provides another measure the magnetic properties are used to help correlate the data to elasticity. Tb6FeSb2 and Tb6FeBi2 Curie temperatures are 253(3)K and 246(5)K respectively. The low temperature magnetic transition of Tb6FeSb2 is 65-90K and Tb6FeBi2 is 55-75K. RUS suggests that this low temperature transition is somehow related to a structural transition but this transition does not occur in these two compounds. Co-substitution of Tb6FeSb2 and Tb6FeBi2 seem to greatly affect this lower temperature transition in RUS. It does not greatly effect the curie temperature. Low temperature XRD shows that Co-substitution also creates a structural transition in this family of compounds.
50

EFFECTS OF MAGNETIC FIELD ON THE SHAPE MEMORY BEHAVIOR OF SINGLE AND POLYCRYSTALLINE MAGNETIC SHAPE MEMORY ALLOYS

Turabi, Ali S. 01 January 2015 (has links)
Magnetic Shape Memory Alloys (MSMAs) have the unique ability to change their shape within a magnetic field, or in the presence of stress and a change in temperature. MSMAs have been widely investigated in the past decade due to their ability to demonstrate large magnetic field induced strain and higher frequency response than conventional shape memory alloys (SMAs). NiMn-based alloys are the workhorse of metamagnetic shape memory alloys since they are able to exhibit magnetic field induced phase transformation. In these alloys, martensite and austenite phases have different magnetization behavior, such as the parent phase can be ferromagnetic and martensite phase can be weakly magnetic. The magnetization difference between the transforming phases creates Zeeman energy, which is the main source for magnetic field induced phase transformation, is unlimited with applied field and orientation independent. Thus, metamagnetic shape memory alloys can be employed in polycrystalline form and provide higher actuation stress than conventional MSMAs. High actuation stress levels and frequencies in metamagnetic shape memory alloys are promising for magnetic actuation applications. Effects of heat treatments and cooling rates on the transformation temperatures, magnetization response and shape memory behavior under compressive stress were explored in Ni45Mn36.5Co5In13.5 [100] oriented single crystalline alloys to obtain high transformation temperatures, large magnetization difference, and low hysteresis behavior. It was found that transformation temperatures increase with higher heat treatment temperatures and decrease drastically at lower cooling rates. Temperature hysteresis decreased with increasing heat treatment temperatures. It was revealed that transformation temperatures, hysteresis, and magnetization response can be tailored by heat treatments via modifying interatomic order. Magnetic and mechanical results of NiMn-based metamagnetic alloys in single and polycrystalline forms as functions of composition, stress, temperature and magnetic field (up to 9 Tesla) were revealed through thermal-cycling under stress and magnetic field; stress-cycling as functions of temperature and magnetic field; and magnetic-field-cycling under stress at several temperatures experiments. Single crystalline samples of NiMnCoIn showed recoverable strain of 1.5 % due to magnetic field induced reversible phase transformation under constant stress and strain of 3.7 % by magnetic field induced recovery after variant reorientation of martensite. The magnetic field effect on the superelasticity and shape memory effects were also explored in selected orientations of [100], [110] and [111]. Fe-based ferromagnetic shape memory alloys have received considerable attention due to their better workability, strength, and lower cost compared with commercial NiTi based SMAs. The shape memory properties of a ferrous single crystalline alloy, FeNiCoAlNb, were investigated along the [100] orientation by thermal cycling under constant stress and superelasticity tests in both tension and compression. Aging was used to form nano-size precipitates to demonstrate shape memory behavior and tailor the shape memory properties. It was found that after proper heat treatments, [001] oriented FeNiCoAlNb showed a compressive strain of 15%, low temperature dependent superelastic behavior, high compression-tension asymmetry, and high compressive strength (~3GPa). The orientation dependence of the mechanical properties of FeNiCoAlNb single crystals were investigated along the [100], [110], [012] and [113] orientations. In addition, martensite phase showed higher magnetization than austenite phase as opposed to NiMn-based metamagnetic shape memory alloys. This magnetization difference is promising because it can allow magnetic field induced forward transformation. Ferrous alloys have great potential for high strength, temperature independent, and large scale actuator applications.

Page generated in 0.097 seconds