• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TUNNELING SPECTROSCOPY STUDY OF CALCIUM RUTHENATE

Bautista, Anthony 01 January 2010 (has links)
The ruthenates are perhaps one of the most diverse group of materials known up to date. These compounds exhibit a wide array of behaviors ranging from the exotic pwave superconductivity in Sr2RuO4, to the itinerant ferromagnetism in SrRuO3, and the Mott-insulating behavior in Ca2RuO4. One of the most intriguing compounds belonging to this group is Ca3Ru2O7 which is known to undergo an antiferromagnetic ordering at 56K and an insulating transition at 48K. Most intriguing, however, is the behavior displayed by this compound in the presence of an external magnetic field. For fields parallel to the a-axis, the compound undergoes a metamagnetic transition into the ferromagnetic region at 6 T. If the external field direction is changed to the b-axis then the result will be different. colossal magnetoresistance occurs and a fall in reistivity of up to three orders of magnitude is recorded at fields of 15T. Most interesting, however, is the energy gap observed for this material. A number of groups have measured such gap with different methods and found conflicting results. For this reason it was of vital importance to perform measurements on this compound and try to resolve this issue. Tunneling spectroscopy is one of the most powerful techniques which can be used to probe the electronic properties of a material. The method is best suited to measure the density of states of a material and hence the nature of the strong correlations which dictate the properties of the compound. We performed a series of tunneling spectroscopy measurements by means of planar tunnel junctions. These types of junctions were chosen because of their stability over a large temperature range and their stability in the presence of an external field. The anisotropies which showed up in the resistivity and magnetization measurements manifested also in our data. For tunneling parallel to the a-axis, we observed a gap opening at 48K with a width a peak to peak width of 2Δa ~258±15meV. As the temperature was lowered, the gap size increased reaching a maximum width of 2Δa ~ 845±38meVat 4.2K. Tunneling parallel to the b-axis, the gap has a much smaller size than the a-axis gap. At 48K the gap width is about 2Δb ~ 201±13 meV and reaches a maximum width of 2Δb ~ 366±33 meV at 4.2K. For the c-axis, the situation is different since the gap opens at 56K instead of 48K. The gap width at 56K is about 2Δc ~ 102±6meV and reaches a maximum width of 2Δc ~ 179±14 meV at 4.2K. In the presence of an external field, we noticed that the overall behavior was always the same in the ab-plane but differed in c-axis direction. In our experiment, an external field was applied along the a-axis and measurements were made at 4.2K. For aaxis tunneling, the gap width decreased to a value of 2Δa ~ 587±27 meV at 4.2 K at 7T. On the other hand, the gap width in the b-axis direction decreased to a value of 2Δb ~ 308±25 meV for the same field. For the c-axis direction, the gap decreased to a value of 2Δc ~ 112±8 meV at 7T. The DOS of the c-axis differs for fields of 6T and above. A third peak emerges inside the gap on the valence side of the DOS. This third peak seems to be a direct consequence of the metamagnetic transition at 6T observed by other groups and may be attributable to a spin-filtering effect.
2

EFFECTS OF MAGNETIC FIELD ON THE SHAPE MEMORY BEHAVIOR OF SINGLE AND POLYCRYSTALLINE MAGNETIC SHAPE MEMORY ALLOYS

Turabi, Ali S. 01 January 2015 (has links)
Magnetic Shape Memory Alloys (MSMAs) have the unique ability to change their shape within a magnetic field, or in the presence of stress and a change in temperature. MSMAs have been widely investigated in the past decade due to their ability to demonstrate large magnetic field induced strain and higher frequency response than conventional shape memory alloys (SMAs). NiMn-based alloys are the workhorse of metamagnetic shape memory alloys since they are able to exhibit magnetic field induced phase transformation. In these alloys, martensite and austenite phases have different magnetization behavior, such as the parent phase can be ferromagnetic and martensite phase can be weakly magnetic. The magnetization difference between the transforming phases creates Zeeman energy, which is the main source for magnetic field induced phase transformation, is unlimited with applied field and orientation independent. Thus, metamagnetic shape memory alloys can be employed in polycrystalline form and provide higher actuation stress than conventional MSMAs. High actuation stress levels and frequencies in metamagnetic shape memory alloys are promising for magnetic actuation applications. Effects of heat treatments and cooling rates on the transformation temperatures, magnetization response and shape memory behavior under compressive stress were explored in Ni45Mn36.5Co5In13.5 [100] oriented single crystalline alloys to obtain high transformation temperatures, large magnetization difference, and low hysteresis behavior. It was found that transformation temperatures increase with higher heat treatment temperatures and decrease drastically at lower cooling rates. Temperature hysteresis decreased with increasing heat treatment temperatures. It was revealed that transformation temperatures, hysteresis, and magnetization response can be tailored by heat treatments via modifying interatomic order. Magnetic and mechanical results of NiMn-based metamagnetic alloys in single and polycrystalline forms as functions of composition, stress, temperature and magnetic field (up to 9 Tesla) were revealed through thermal-cycling under stress and magnetic field; stress-cycling as functions of temperature and magnetic field; and magnetic-field-cycling under stress at several temperatures experiments. Single crystalline samples of NiMnCoIn showed recoverable strain of 1.5 % due to magnetic field induced reversible phase transformation under constant stress and strain of 3.7 % by magnetic field induced recovery after variant reorientation of martensite. The magnetic field effect on the superelasticity and shape memory effects were also explored in selected orientations of [100], [110] and [111]. Fe-based ferromagnetic shape memory alloys have received considerable attention due to their better workability, strength, and lower cost compared with commercial NiTi based SMAs. The shape memory properties of a ferrous single crystalline alloy, FeNiCoAlNb, were investigated along the [100] orientation by thermal cycling under constant stress and superelasticity tests in both tension and compression. Aging was used to form nano-size precipitates to demonstrate shape memory behavior and tailor the shape memory properties. It was found that after proper heat treatments, [001] oriented FeNiCoAlNb showed a compressive strain of 15%, low temperature dependent superelastic behavior, high compression-tension asymmetry, and high compressive strength (~3GPa). The orientation dependence of the mechanical properties of FeNiCoAlNb single crystals were investigated along the [100], [110], [012] and [113] orientations. In addition, martensite phase showed higher magnetization than austenite phase as opposed to NiMn-based metamagnetic shape memory alloys. This magnetization difference is promising because it can allow magnetic field induced forward transformation. Ferrous alloys have great potential for high strength, temperature independent, and large scale actuator applications.
3

Étude du couplage magnétique dans des nanoparticules bimétalliques de FeRh et de CoTb / Investigation of magnetic coupling in bimetallic nanoparticles of FeRh and CoTb

Robert, Anthony 18 December 2017 (has links)
L'enregistrement magnétique sur disque dur est aujourd'hui le moyen le plus fiable pour stocker l'information. L'enregistrement perpendiculaire magnétique a permis de multiplier par dix la densité de stockage par rapport à l'enregistrement longitudinal. Mais cette diminution de la taille des bits d'information se heurte à une limite physique, dite « limite superparamagnétique », qui correspond à une instabilité thermique de l'aimantation. Afin de repousser cette limite, il convient donc de fabriquer des bits avec une forte anisotropie. Mais plus les grains ont une grande anisotropie magnétique plus le champ nécessaire pour l'écriture doit être important. L'intérêt d'avoir un matériau aux propriétés magnétiques ajustables prend ainsi tout son sens. En utilisant des matériaux aux énergies d'anisotropies facilement modifiables, il n'est donc pas nécessaire de faire évoluer les têtes d'écriture. C'est dans cette optique que nous avons choisi d'étudier deux systèmes bimétalliques. Le premier est un alliage entre un métal de transition (Co) et une terre-rare lourde (Tb). Le deuxième système combine un métal de transition (Fe) et un métal magnétiquement polarisable (Rh). Dans ce travail, nous présenterons les résultats obtenus sur des nanoparticules de Co80Tb20 et de Fe50Rh50 de moins de 10 nm de diamètre, préparées par MS-LECBD (« Mass Selected Low Energy Cluster Beam Deposition »). Les échantillons, sous forme de multicouches, sont obtenus par dépôts séquentiels d'agrégats et de _lm de carbone. Dans un premier temps, une caractérisation structurale (dispersion de taille, morphologie, composition, structure cristallographique) par microscopie électronique a été réalisé pour les deux systèmes. Dans un second temps, nous avons étudié les propriétés magnétiques de ces agrégats par magnétométrie SQUID et dichroïsme magnétique circulaire (x-ray magnetic circular dichroism (XMCD)). Nous verrons, dans le cas du CoTb, que la réduction de taille entraine de profonds changements de ses propriétés par rapport au massif, notamment au niveau du couplage entre les sous-réseaux magnétiques de Co et de Tb. Dans le cas du FeRh, après avoir montré qu'un traitement thermique permet d'obtenir des agrégats chimiquement ordonnées B2, nous verrons l'influence des effets de taille sur la transition métamagnétique caractérisant cet alliage / The magnetic data storage is the most reliable way to store information. The perpendicular recording multiplied the storage density by ten with respect to the longitudinal recording. However, this reduction in the size of the information bits comes up against a physical limit, called the "superparamagnetic limit", which corresponds to a thermal instability of the magnetization. In order to push back this limit, it is therefore necessary to manufacture bits with strong anisotropy. But the more the grains have a large magnetic anisotropy the greater the field needed for writing must be. Thus, it's a great advantage of having a material with adjustable magnetic properties. By using materials with easily modifiable anisotropy energies, it is therefore not necessary to change the writing heads. It is with this in mind that we have chosen to study two bimetallic systems. The first is an alloy between a transition metal (Co) and a heavy earth-rare (Tb). The second system combines a transition metal (Fe) and a magnetically polarizable metal (Rh). In this work, we present results obtained on nanoparticles of Co80Tb20 and Fe50Rh50 of less than 10 nm in diameter, prepared by MS LECBD ("Mass Selected Low Energy Cluster Beam Deposition"). The samples, in the form of multilayers, are obtained by sequential deposition of nanoparticles and carbon _lm. First, a structural characterization (size dispersion, morphology, composition, crystallographic structure) by electron microscopy was carried out for both systems. Secondly, we have studied the magnetic properties of these nanoparticles by SQUID magnetometry and magnetic circular dichroism (XMCD). We will see, in the case of CoTb that the reduction in size leads to profound changes in its properties with respect to the massif, especially in the coupling between the magnetic sub-lattices of Co and Tb. In the case of FeRh, after having shown that a heat treatment makes it possible to obtain chemically ordered nanoparticles B2, we will see the influence of the size effects on the metamagnetic transition characterizing this alloy
4

Výměnná anizotropie v metamagnetických heterostrukturách / Exchange bias in metamagnetic heterostructures

Zadorozhnii, Oleksii January 2021 (has links)
Výměnná anizotropie je zajímavý fyzikální jev vznikající na rozhraní antiferomagnetických (AF) a feromagnetických (FM) materiálů, který již je široce používán v elektronickém průmyslu a magnetickém záznamu. Přestože byl tento jev dlouhou dobu intenzivně studován, jeho přesný mechanizmus zatím nebyl uspokojivě vysvětlen. V této práci je představen přehled studií dokumentujících výměnnou anizotropii v tenkých dvojvrstvách, včetně experimentálních výsledků a teoretických modelů. Experimentální úkoly této diplomové práce zahrnovaly jak výrobu, tak měření různých modelových systémů vykazujících výměnnou anizotropii. Dvojvrstva Fe/FeRh, kde vrstva FeRh prochází fázovou přeměnou z AF fáze na FM fázi při 360 K, poskytuje možnost nastavení parametrů výměnné anizotropie. Dále byly zkoumány účinky výměnné anizotropie a tvarové anizotropie v mikrostrukturách Fe/FeRh. Konečně, přítomnost výměnné anizotropie byla zkoumána mezi FM a AF fází koexistujícími během fázové přeměny v nanodrátech FeRh. Vzorky byly vyrobeny pomocí magnetronového naprašování a elektronové litografie. Všechny prezentované systémy byly analyzovány pomocí magnetooptické Kerrovy mikroskopie. Výměnná anizotropie byla úspěšně nalezena v systému Fe/FeRh, přičemž její velikost byla téměř identická co do rozsahu i orientace s výsledky v literatuře, přestože námi vyrobená dvojvrstva měla horší kvalitu FM-AF rozhraní. Bylo také prokázáno, že v tomto systému existuje tzv. tréninkový efekt (Training effect), což je výrazným důkazem existence výměnné anizotropie. U nanodrátů bylo změřena významná výměnná anizotropie mezi koexistujícími fázemi FM a AF během fázové přeměny.
5

Structure et propriétés physiques de composés magnétiques de type RT12B6 et (Hf,Ta)Fe2 et leur dépendance en fonction de la pression (physique ou chimique) (R=élément de terre rare et T=élément de transition 3d) / Physical and structural properties of RT12B6 and (Hf,Ta)Fe2 type magnetic compounds and their evolution versus pressure (physical or chemical one). (R=rare-earth element and T=3d transition element)

Diop, Léopold Vincent Birane 14 March 2014 (has links)
Notre étude à caractère pluridisciplinaire comprend l'élaboration de composés intermétalliques ainsi que la caractérisation de leurs propriétés tant structurales que magnétiques. Nos travaux ont porté sur des borures RT12B6 où R est un élément de terre rare ou l'yttrium et T un métal de transition 3d ainsi que des phases de Laves (Hf,Ta)Fe2. Pour appréhender les propriétés physiques de ces composés, nous avons mis en œuvre diverses variables externes (température, champ magnétique, pression) mais aussi internes telle que la pression chimique liée à la substitution d'un élément par un autre. Nous apportons une contribution à l'étude des propriétés magnétiques des composés RCo12B6. Les propriétés magnétiques de ces composés sont caractérisées à la fois par une température d'ordre qui varie peu avec l'élément de terre rare R et un moment magnétique de Co remarquablement faible. Nous montrons que les interactions d'échange R-Co sont de plus d'un ordre de grandeur plus faibles que les interactions Co-Co existant dans ces composés. La substitution du fer au cobalt dans les composés RCo12B6 est possible et donne lieu à une localisation préférentielle. Grâce à la spectroscopie Mössbauer et à la diffraction neutronique, nous avons démontré l'extrême sensibilité de l'orientation des moments magnétiques à la substitution Fe/Co. Le composé LaFe12B6 présente des propriétés magnétiques remarquables avec un état fondamental antiferromagnétique (AFM) et une transition vers un état ferromagnétique (FM) qui peut être induite par le champ appliqué ou par la température. A basse température la transition métamagnétique AFM-FM est accompagnée d'une hystérésis très large et est caractérisée par des sauts spectaculaires comme l'illustre nos mesures magnétiques, de magnétostriction ou de transport. La transition métamagnétique s'avère également fort sensible à la pression appliquée. Le composé intermétallique LaFe12B6 est caractérisé par une forte expansion thermique linéaire, un large effet magnétovolumique et présente à la fois des effets magnétocaloriques inverse et normal. L'effet de la substitution du cobalt ou du manganèse au fer ou du cérium au lanthane sur les propriétés structurales et magnétiques a été étudié de façon détaillée. La substitution Co/Fe ou Mn/Fe entraine dans les deux cas une forte augmentation du champ critique de la transition métamagnétique. Inversement la substitution Ce/La, quant à elle, réduit fortement le champ de transition. L'étude de l'alliage amorphe LaFe12B6, préparé par hypertrempe, montre des propriétés magnétiques radicalement différentes puisque la phase amorphe devient alors ferromagnétique avec une haute température de Curie. Enfin nous avons étudié les propriétés magnétiques intrinsèques du système intermétallique Hf1-xTaxFe2 pour lequel la solution solide est complète. L'analyse de l'ensemble des mesures a mis en lumière des comportements originaux du magnétisme du fer et ceci tant dans l'état ordonné que dans l'état paramagnétique. Le caractère inhabituel du magnétisme de ces composés est attribué au comportement d'électrons itinérants, lequel est à l'origine de la transition métamagnétique entre l'état AFM et l'état FM. / Our multidisciplinary study includes the synthesis of intermetallic compounds and the characterization of their structural and magnetic properties. Our work has focused on RT12B6 borides where R is a rare earth element or yttrium and T a 3d transition metal as well as (Hf, Ta)Fe2 Laves phases. In order to understand the physical properties of these compounds, we have implemented various external variables (temperature, magnetic field, pressure) as well as internal variables such as the chemical pressure due to the substitution of one element with another. Through this experimental work, we investigated the magnetic properties of RCo12B6 compounds. The magnetic properties of these compounds present both an ordering temperature which is quasi independent of the rare earth element R and a remarkably small magnetic moment of Co. We show that the R-Co exchange interactions are more than an order of magnitude smaller that the Co-Co occurring in these compounds. We demonstrated that the iron for cobalt substitution in RCo12B6 compounds gives rise to a preferential substitution scheme. Combining Mössbauer spectroscopy and neutron diffraction, we have found that the magnetic ordering direction is extremely sensitive to Fe/Co substitution. LaFe12B6 compound presents remarkable magnetic properties with an antiferromagnetic (AFM) ground state but it can be transformed into a ferromagnetic (FM) state by the applied magnetic field or by the temperature. At low temperature, the field-induced AFM-FM metamagnetic transition has a large hysteresis and exhibits ultra sharp jumps as shown in our magnetic, magnetostriction and transport measurements. The metamagnetic transition is also very sensitive to the applied pressure. LaFe12B6 intermetallic compound shows a large linear thermal expansion, a huge volume magnetostriction and both normal and inverse magnetocaloric effects. The effect of cobalt or manganese for iron substitution or cerium for lanthanum substitution on the structural and magnetic properties was deeply investigated. Co/Fe or Mn/Fe substitution in both cases leads to a strong increase of the critical field of the metamagnetic transition. However Ce/La substitution reduces strongly the transition field. The investigation of LaFe12B6 amorphous alloy, prepared by melt spinning, shows radically different magnetic properties since the amorphous phase becomes ferromagnetic with a high Curie temperature. Finally we studied the intrinsic magnetic properties of the Hf1-xTaxFe2 system for which the solid solution is complete. The analysis of all the measurements highlighted original behaviours of the iron magnetism and this both in the ordered state and in the paramagnetic state. These remarkable properties are attributed to the itinerant character of the Fe 3d band magnetism, which gives rise to the metamagnetic transition between the AFM and FM states.

Page generated in 0.0609 seconds