• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Convexidade generalizada em problemas de controle ótimo com tempo livre /

Villanueva, Fabiola Roxana. January 2015 (has links)
Orientador: Valeriano Antunes de Oliveira / Banca: Lucelina Batista dos Santos / Banca: Geraldo Nunes Silva / Resumo: Neste trabalho estudamos condicões necessárias e suficientes de otimalidade para problemas de controle ótimo com tempos finais livres, compreendendo o estudo do Princípio do Máximo e convexidade generalizada. Apresentamos as condições necessárias do princípio do máximo com tempos finais fixos e do princípio do máximo com tempos finais livres. Logo apresentamos as condições suficientes para problemas de controle ótimo com tempos finais fixos; introduzimos duas definições de convexidade generalizada, a primeira denominada PML-pseudoinvexidade, que envolve os multiplicadores de Lagrange e, a segunda denominada PM-pseudoinvexidade, que não envolve os multiplicadores de Lagrange. Mostramos que para um problema PML-pseudoinvexo todos os PM-processos (processos de controle que satisfazem as condições necessárias do princípio do máximo) são processos ótimos e reciprocamente os problemas tais que todos os PM-processos são ótimos, são problemas PML-pseudoinvexos; também mostramos que sob algumas condições, PML-pseudoinvexidade e equivalente a PM-pseudoinvexidade. Finalmente apresentamos as condições suficientes para problemas de controle ótimo com tempos finais livres; introduzimos uma de de nição de convexidade generalizada denominada PM-pseudoinvexidade livre, que não envolve os multiplicadores de Lagrange. Mostramos que sob algumas condições, se o problema e PM-pseudoinvexo livre, então todo PM-processo normal e um processo ótimo; também mostramos que sob algumas condições, se o problema e tal que todo PM-processo e um processo ótimo, então o problema e PM-pseudoinvexo livre / Abstract: In this work we study necessary and sufficient optimality conditions for free end-time optimal control problems, comprising the study of the Maximum Principle and generalized convexity. We introduce the necessary conditions of the xed end-time maximum principle and of the free end-time maximum principle. Next, we present sufficient conditions for xed end-time optimal control problems; we introduce two de nitions of generalized con- vexity, the rst called LMP-pseudoinvexity, which involves the Lagrange multipliers and the second called MP-pseudoinvexity, which does not involve the Lagrange multipliers. We show that for a LMP-pseudoinvex problem all the MP-processes (control processes that satisfy the necessary conditions of the maximum principle) are optimal processes and con- versely the problems such that all the MP-processes are optimal, are LMP-pseudoinvex problems; also we show that under some conditions, LMP-pseudoinvexity is equivalent to MP-pseudoinvexity. Finally, we present sufficient conditions for free end-time optimal control problem; we introduce a de nition of generalized convexity called MP-free pseudoinvexity, which does not involve the Lagrange multipliers. We show that under some conditions, if the problem is MP-free pseudoinvex, then all normal MP-processes are optimal; also we show that under some conditions, if the problem is such that every MP-process is an optimal process, then the problem is MP-free pseudoinvex / Mestre
2

Convexidade generalizada em problemas de controle ótimo com tempo livre

Villanueva, Fabiola Roxana [UNESP] 20 February 2014 (has links) (PDF)
Made available in DSpace on 2015-09-17T15:24:15Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-02-20. Added 1 bitstream(s) on 2015-09-17T15:48:08Z : No. of bitstreams: 1 000843899.pdf: 517994 bytes, checksum: a54791f8368518a4a957793e48d72808 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Neste trabalho estudamos condicões necessárias e suficientes de otimalidade para problemas de controle ótimo com tempos finais livres, compreendendo o estudo do Princípio do Máximo e convexidade generalizada. Apresentamos as condições necessárias do princípio do máximo com tempos finais fixos e do princípio do máximo com tempos finais livres. Logo apresentamos as condições suficientes para problemas de controle ótimo com tempos finais fixos; introduzimos duas definições de convexidade generalizada, a primeira denominada PML-pseudoinvexidade, que envolve os multiplicadores de Lagrange e, a segunda denominada PM-pseudoinvexidade, que não envolve os multiplicadores de Lagrange. Mostramos que para um problema PML-pseudoinvexo todos os PM-processos (processos de controle que satisfazem as condições necessárias do princípio do máximo) são processos ótimos e reciprocamente os problemas tais que todos os PM-processos são ótimos, são problemas PML-pseudoinvexos; também mostramos que sob algumas condições, PML-pseudoinvexidade e equivalente a PM-pseudoinvexidade. Finalmente apresentamos as condições suficientes para problemas de controle ótimo com tempos finais livres; introduzimos uma de de nição de convexidade generalizada denominada PM-pseudoinvexidade livre, que não envolve os multiplicadores de Lagrange. Mostramos que sob algumas condições, se o problema e PM-pseudoinvexo livre, então todo PM-processo normal e um processo ótimo; também mostramos que sob algumas condições, se o problema e tal que todo PM-processo e um processo ótimo, então o problema e PM-pseudoinvexo livre / In this work we study necessary and sufficient optimality conditions for free end-time optimal control problems, comprising the study of the Maximum Principle and generalized convexity. We introduce the necessary conditions of the xed end-time maximum principle and of the free end-time maximum principle. Next, we present sufficient conditions for xed end-time optimal control problems; we introduce two de nitions of generalized con- vexity, the rst called LMP-pseudoinvexity, which involves the Lagrange multipliers and the second called MP-pseudoinvexity, which does not involve the Lagrange multipliers. We show that for a LMP-pseudoinvex problem all the MP-processes (control processes that satisfy the necessary conditions of the maximum principle) are optimal processes and con- versely the problems such that all the MP-processes are optimal, are LMP-pseudoinvex problems; also we show that under some conditions, LMP-pseudoinvexity is equivalent to MP-pseudoinvexity. Finally, we present sufficient conditions for free end-time optimal control problem; we introduce a de nition of generalized convexity called MP-free pseudoinvexity, which does not involve the Lagrange multipliers. We show that under some conditions, if the problem is MP-free pseudoinvex, then all normal MP-processes are optimal; also we show that under some conditions, if the problem is such that every MP-process is an optimal process, then the problem is MP-free pseudoinvex
3

Algumas contribuições em otimização multiobjetivo

Santos, Lucelina Batista dos 26 February 2004 (has links)
Orientadores: Marko A. Rojas Medar, Rafaela Osuna Gomez / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-03T20:15:50Z (GMT). No. of bitstreams: 1 Santos_LucelinaBatistados_D.pdf: 3422141 bytes, checksum: bc4a2465caf8858862afc59db64a0e3c (MD5) Previous issue date: 2004 / Resumo: Neste trabalho, estudamos o problema de otimização vetorial entre espaços de Banach quanto a condições necessárias e suficientes de otimalidade. Para isto, utilizamos diferentes noções de convexidade generalizada. Na Primeira Parte tratamos o problema (Fréchet) diferenciável. Mostramos que as soluções fracamente eficientes de tais problemas podem ser completamente caracterizadas em termos de condições estacionárias e de convexidade generalizadas (pseudoinvexidade, no caso do problema multiobjetivo irrestrito e KT-invexidade, para o problema com restrições de desigualdade). Na Segunda Parte, discutimos o problema não diferenciável. Estabelecemos um resultado de existência de soluções fracamente eficientes e uma caracterização de soluções fracamente eficientes via desigualdades quase-variacionais. Também discutimos condições de otimalidade através de cones de aproximação local e de K-derivadas. Além disto, obtivemos condições de segunda ordem através das noções de Hessiana e Derivadas Direcionais de segunda ordem generalizados (Cominetti e Correa). Na Terceira Parte, consideramos dois problemas específicos de otimização multiobjetivo não diferenciável: o problema fracionário multiobjetivo e o problema de tempo contínuo multiobjetivo / Doutorado / Doutor em Matemática Aplicada
4

Sobre algumas contribuições em otimização não diferenciavel invexa

Brandão, Adilson Jose Vieira 18 May 1998 (has links)
Orientador: Marko Antonio Rojas Medar / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-07-23T14:06:36Z (GMT). No. of bitstreams: 1 Brandao_AdilsonJoseVieira_D.pdf: 1521597 bytes, checksum: ad199230c81dd8500956738c837d725c (MD5) Previous issue date: 1998 / Resumo: Nosso objetivo neste trabalho de tese é estudar alguns problemas de otimização onde estabelecemos, entre outros resultados, condições suficientes de otimalidade global sem nenhuma hipótese de convexidade ou diferenciabilidade. As técnicas para se atacar tais problemas são a análise não diferenciável devida ao matemático canadense Clarke e o conceito de convexidade generalizada, chamado invexidade, introduzido pelo matemático americano Hanson, as quais são detalhadas no capítulo 1. No capítulo 2 estudamos alguns problemas de programação matemática estabelecendo condições suficientes de otimalidade global e dualidade. De posse desses resultados estabelecemos nosso principal resultado na seção: um teorema de alternativa invexo do tipo Gordan, onde as funções envolvidas são localmente Lipschitz e invexas. No capítulo 3 obtemos condições suficientes de otimalidade global na forma de uma regra de multiplicadores para um problema de otimização entre espaços de Banach. No capítulo 4 obtemos condições suficientes de otimalidade global na forma de uma regra de multiplicadores para um problema de programação matemática com tempo contínuo o qual estende os resultados obtidos pelo matemático americano Zalmai para o mesmo problema no caso diferenciável. Também estabelecemos condições suficientes de 2a. ordem utilizando a noção de Hessiano generalizado introduzida pelos matemáticos chilenos Cominetti e Correa. No último capítulo damos algumas direções de pesquisa futura dentro da área de otimização não diferenciável. / Abstract: Not informed / Doutorado / Doutor em Matemática Aplicada
5

Método subgradiente incremental para otimização convexa não diferenciável / Incremental subgradient method for nondifferentiable convex optimization

Adona, Vando Antônio 18 December 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-26T12:20:46Z No. of bitstreams: 2 Dissertação - Vando Antônio Adona - 2014.pdf: 1128475 bytes, checksum: a2d00afcaef383726904cf6e6fd3527d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-27T10:48:07Z (GMT) No. of bitstreams: 2 Dissertação - Vando Antônio Adona - 2014.pdf: 1128475 bytes, checksum: a2d00afcaef383726904cf6e6fd3527d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-03-27T10:48:07Z (GMT). No. of bitstreams: 2 Dissertação - Vando Antônio Adona - 2014.pdf: 1128475 bytes, checksum: a2d00afcaef383726904cf6e6fd3527d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-12-18 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / We consider an optimization problem for which the objective function is the sum of convex functions, not necessarily differentiable. We study a subgradient method that executes the iterations incrementally selecting each component function sequentially and processing the subgradient iteration individually. We analyze different alternatives for choosing the step length, highlighting the convergence properties for each case. We also analyze the incremental model in other methods, considering proximal iteration and combinations of subgradient and proximal iterations. This incremental approach has been very successful when the number of component functions is large. / Consideramos um problema de otimização cuja função objetivo consiste na soma de funções convexas, não necessariamente diferenciáveis. Estudamos um método subgradiente que executa a iteração de forma incremental, selecionando cada função componente de maneira sequencial e processando a iteração subgradiente individualmente. Analisamos diferentes alternativas para a escolha do comprimento de passo, destacando as propriedades de convergência para cada caso. Abordamos também o modelo incremental em outros métodos, considerando iteração proximal e combinações de iterações subgradiente e proximal. Esta abordagem incremental tem sido muito bem sucedida quando o número de funções componentes é grande.
6

Método de direções interiores ao epígrafo para a solução de problemas de otimização não-convexos e não-diferenciáveis via dualidade lagrangeana

Gómez, Jesús Cernades 07 June 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-03-31T11:28:07Z No. of bitstreams: 1 jesuscernadesgomez.pdf: 1031961 bytes, checksum: 184ef4c8e577aada634107338cd8a4ee (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-04-24T02:56:11Z (GMT) No. of bitstreams: 1 jesuscernadesgomez.pdf: 1031961 bytes, checksum: 184ef4c8e577aada634107338cd8a4ee (MD5) / Made available in DSpace on 2016-04-24T02:56:11Z (GMT). No. of bitstreams: 1 jesuscernadesgomez.pdf: 1031961 bytes, checksum: 184ef4c8e577aada634107338cd8a4ee (MD5) Previous issue date: 2013-06-07 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho tem por finalidade apresentar um método para a solução de problemas de otimização não-convexos e não-diferenciáveis. O método, chamado IED (Interior Epigraph Directions), aplica-se a problemas de otimização cuja função objetivo é contínua e definida em um subconjunto compacto de Rn, sujeita a restrições de igualdade e/ou desigualdade. O método IED considera o problema dual induzido por uma função lagrangeana aumentada e obtém a solução primal gerando uma sequêmcia de pontos no interior do epígrafo da função dual. Primeiramente, um subgradiente é usado para gerar uma aproximação linear do problema dual. Em seguida, usa-se esta aproximação linear para definir-se uma direção de busca interior ao epígrafo da função dual. Obtém-se então, a partir de um ponto no interior do epígrafo, um novo ponto interior e, consequêntemente, uma sequência de pontos interiores é construida. Essa sequência produz uma sequência dual que por sua vez origina uma sequência primal, através da solução de um subproblema originado pela dualidade. A análise de convergência do algoritmo é também apresentada bem como resultados numéricos da solução de problema extraídos da literatura. / This work presents a method for solving constrained nonsmooth and nonconvex optimization problems. Themethod, called IED (Interior Epigraph Directions) can be applied to optimization problems with continuos objective functions defined over compact subsets of Rn and subjected to equalities and/or inequalities constraints. The IED method considers the dual problem induced by a generalized augmented Lagrangian function and obtains the primal solution by generating a sequence of iterates in the interior of the dual function. First, a subgradient is used to build a linear approximation to the dual problem. Then, this linear approximation is used to define a search direction in the interior of the dual function. From an interior point of the epigraph, a new point is obtained and an interior sequence to the epigraph is built, This sequence of interior points generates a dual sequence which in its turn generates a primal sequence by solving a problem originated by duality. The convergence analysis is also presented as well as numerical result of several problems obtained from de literature.
7

Metodo de direções interiores ao epígrafo - IED para otimização não diferenciável e não convexa via Dualidade Lagrangeana: estratégias para minimização da Lagrangeana aumentada

Franco, Hernando José Rocha 08 June 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-07-12T12:23:47Z No. of bitstreams: 1 hernandojoserochafranco.pdf: 1674623 bytes, checksum: f6df7317dd6a8e94e51045dbf75e8241 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-07-17T11:56:13Z (GMT) No. of bitstreams: 1 hernandojoserochafranco.pdf: 1674623 bytes, checksum: f6df7317dd6a8e94e51045dbf75e8241 (MD5) / Made available in DSpace on 2018-07-17T11:56:13Z (GMT). No. of bitstreams: 1 hernandojoserochafranco.pdf: 1674623 bytes, checksum: f6df7317dd6a8e94e51045dbf75e8241 (MD5) Previous issue date: 2018-06-08 / A teoria clássica de otimização presume a existência de certas condições, por exemplo, que as funções envolvidas em um problema desta natureza sejam pelo menos uma vez continuamente diferenciáveis. Entretanto, em muitas aplicações práticas que requerem o emprego de métodos de otimização, essa característica não se encontra presente. Problemas de otimização não diferenciáveis são considerados mais difíceis de lidar. Nesta classe, aqueles que envolvem funções não convexas são ainda mais complexos. O Interior Epigraph Directions (IED) é um método de otimização que se baseia na teoria da Dualidade Lagrangeana e se aplica à resolução de problemas não diferenciáveis, não convexos e com restrições. Neste estudo, apresentamos duas novas versões para o referido método a partir de implementações computacionais de outros algoritmos. A primeira versão, denominada IED+NFDNA, recebeu a incorporação de uma implementação do algoritmo Nonsmooth Feasible Direction Nonconvex Algorithm (NFDNA). Esta versão, ao ser aplicada em experimentos numéricos com problemas teste da literatura, apresentou desempenho satisfatório quando comparada ao IED original e a outros solvers de otimização. Com o objetivo de aperfeiçoar mais o método, reduzindo sua dependência de parâmetros iniciais e também do cálculo de subgradientes, uma segunda versão, IED+GA, foi desenvolvida com a utilização de algoritmos genéticos. Além da resolução de problemas teste, o IED-FGA obteve bons resultados quando aplicado a problemas de engenharia. / The classical theory of optimization assumes the existence of certain conditions, for example, that the functions involved in a problem of this nature are at least once continuously differentiable. However, in many practical applications that require the use of optimization methods, this characteristic is not present. Non-differentiable optimization problems are considered more difficult to deal with. In this class, those involving nonconvex functions are even more complex. Interior Epigraph Directions (IED) is an optimization method that is based on Lagrangean duality theory and applies to the resolution of non-differentiable, non-convex and constrained problems. In this study, we present two new versions for this method from computational implementations of other algorithms. The first version, called IED + NFDNA, received the incorporation of an implementation of the Nonsmooth Feasible Direction Nonconvex Algorithm (NFDNA) algorithm. This version, when applied in numerical experiments with problems in the literature, presented satisfactory performance when compared to the original IED and other optimization solvers. A second version, IED + GA, was developed with the use of genetic algorithms in order to further refine the method, reducing its dependence on initial parameters and also on the calculation of subgradients. In addition to solving test problems, IED + GA achieved good results when applied to engineering problems.
8

Comportamento do método de direções interiores ao epígrafo (IED) quando aplicado a problemas de programação em dois níveis

Oliveira, Erick Mário do Nascimento 26 June 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-09-04T12:20:42Z No. of bitstreams: 1 erickmariodonascimentooliveira.pdf: 3492871 bytes, checksum: 845fa85f6d95efe2e7ad13563f342bc3 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-09-04T13:21:49Z (GMT) No. of bitstreams: 1 erickmariodonascimentooliveira.pdf: 3492871 bytes, checksum: 845fa85f6d95efe2e7ad13563f342bc3 (MD5) / Made available in DSpace on 2018-09-04T13:21:49Z (GMT). No. of bitstreams: 1 erickmariodonascimentooliveira.pdf: 3492871 bytes, checksum: 845fa85f6d95efe2e7ad13563f342bc3 (MD5) Previous issue date: 2018-06-26 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho é apresentado o comportamento do algoritmo IED quando aplicado a problemas de programação em dois níveis. Para isso, o problema do seguidor é substituído pelas condições necessárias de primeira ordem de Karush-Kuhn-Tucker e, dessa maneira, o problema de programação em dois níveis é transformado em um problema de otimização com restrições não lineares. Dessa forma, as condições necessárias para utilização do algoritmo IED (Interior Epigraph Directions) são satisfeitas. Esse método tem como característica resolver problemas de otimização não convexa e não diferenciáveis via utilização da técnica de dualidade Lagrangiana, onde as funções de restrições são introduzidas na função objetivo para formar a função Lagrangiana. Além disso, o método considera o problema dual induzido por um esquema generalizado da dualidade Lagrangiana aumentada e obtém a solução primal produzindo uma sequência de pontos no interior do epígrafo da função dual. Dessa forma, o valor da função dual, em algum ponto do espaço dual, é dado pela minimização da Lagrangiana. Por fim, experimentos numéricos são apresentados em relação à utilização do algoritmo IED em problemas de programação em dois níveis encontrados na literatura. / This work presents the behavior of the IED algorithm when applied to bilevel programming problems. For this, the follower problem is replaced by the first-order necessary Karush-Kuhn-Tucker’s conditions and thus, the problem of bilevel programming turns into an optimization problem with non-linear constraints. Thus, the conditions required for use of the IED (Interior Epigraph Directions) algorithm are satisfied. This method has the characteristic of solving non-convex and non-differentiable optimization problems using the Lagrangian duality technique, where the constraint functions are introduced into the objective function for formulation of the Lagrangian. Furthermore, the method considers the dual problem induced by a generalized scheme of augmented Lagrangian duality and obtains the primal solution by producing a sequence of points inside the dual function epigraph. Then the value of the dual function, at some point in the dual space, is given by Lagrangian minimization. Finally, numerical experiments are presented showing the use of the IED algorithm in bilevel programming problems found in the literature.
9

NFDNA - um algoritmo para otimização não convexa e não diferenciável

Fernandes, Camila de Freitas 08 April 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-06-16T17:52:10Z No. of bitstreams: 1 camiladefreitasfernandes.pdf: 740367 bytes, checksum: fac5ab7dcb039b31d587151b9a53fab1 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-13T14:25:13Z (GMT) No. of bitstreams: 1 camiladefreitasfernandes.pdf: 740367 bytes, checksum: fac5ab7dcb039b31d587151b9a53fab1 (MD5) / Made available in DSpace on 2016-07-13T14:25:13Z (GMT). No. of bitstreams: 1 camiladefreitasfernandes.pdf: 740367 bytes, checksum: fac5ab7dcb039b31d587151b9a53fab1 (MD5) Previous issue date: 2016-04-08 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho estudamos um algoritmo para solução de problemas de otimização irrestrita com funções não necessariamente convexas ou diferenciáveis, denominado Nonsmooth Feasible Direction Nonconvex Algorithm - NFDNA, e fazemos uma aplicação deste algoritmo que consistiu em utilizá-lo como subrotina de um outro algoritmo chamado Interior Epigraph Direction (IED) method. O IED, desenvolvido para resolver problemas de otimização não convexa, não diferenciável mas com restrições, utiliza Dualidade Lagrangeana que requer a minimização da função Lagrangeana. A eficiência do IED depende fortemente de tal minimização. Como aplicação, substituímos a rotina fminsearch do Matlab, utilizada originalmente pelo IED, pelo NFDNA. Mostramos através da solução de problemas teste que a performance do IED foi mais eficiente com a utilização do NFDNA. / In this work we study an algorithm for solving unsconstrained, not necessarily convex or differentiable optimization problems called Nonsmooth Feasible Direction Nonconvex Algorithm - NFDNA. We also employ this algorithm as a subroutine of the Interior Epigraph Directions (IED) method. The IED method, devised for solving constrained, nonconvex and nonsmooth optimization problems uses Lagrangean Duality which requires the minimization of the Lagrangean function. The effectiveness of the IED depends strongly on the Lagrangean function minimization. As an application, we replace the Matlab routine fminsearch, originally used by IED, with NFDNA. We show through the solution of test problems that the IED performance is more efficient by employing NFDNA.

Page generated in 0.0873 seconds