• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Détection en temps-réel des outils chirurgicaux dans des vidéos 2D de neurochirurgie par modélisation de forme globale et d'apparence locale / Real-time detection of surgical tools in 2D neurosurgical videos by modelling global shape and local appearance

Bouget, David 27 May 2015 (has links)
Bien que devenant un environnement de plus en plus riche technologiquement, la salle opératoire reste un endroit où la sécurité des patients n'est pas assurée à 100% comme le montre le nombre toujours conséquent d'erreurs chirurgicales. La nécessité de développer des systèmes intelligents au bloc opératoire apparait comme croissante. Un des éléments clés pour ce type de système est la reconnaissance du processus chirurgical, passant par une identification précise des outils chirurgicaux utilisés. L'objectif de cette thèse a donc porté sur la détection en temps-réel des outils chirurgicaux dans des vidéos 2D provenant de microscopes. Devant l'absence de jeux de données de référence, qui plus est dans un contexte neurochirurgical, la première contribution de la thèse a donc été la création d'un nouvel ensemble d'images de chirurgies du cerveau et du rachis cervical, mis à disposition en ligne. Comme seconde contribution, deux approches différentes ont été proposées permettant de détecter des outils chirurgicaux via des techniques d'analyse d'image. Tout d'abord, le SquaresChnFtrs adapté, basé sur une des méthodes de détection de piétons les plus performantes de la littérature. Notre deuxième méthode, le ShapeDetector, est une approche à deux niveaux n'utilisant aucune contrainte ou hypothèse a priori sur le nombre, la position, ou la forme des outils dans l'image. Par rapport aux travaux précédents du domaine, nous avons choisi de représenter les détections potentielles par des polygones plutôt que par des rectangles, obtenant ainsi des détections plus précises. Pour intégration dans des systèmes médicaux, une optimisation de la vitesse de calcul a été effectuée via un usage optimal du CPU, du GPU, et de méthodes ad-hoc. Pour des vidéos de résolution 612x480 pixels, notre ShapeDetector est capable d'effectuer les détections à une vitesse maximale de 8 Hz. Pour la validation de nos méthodes, nous avons pris en compte trois paramètres: la position globale, la position de l'extrémité, et l'orientation des détections. Les méthodes ont été classées et comparées avec des méthodes de référence compétitives. Pour la détection des tubes d'aspiration, nous avons obtenu un taux de manqué de 15% pour un taux de faux positifs par image de 0.1, comparé à un taux de manqué de 55% pour le SquaresChnFtrs adapté. L'orientation future du travail devra porter sur l'intégration des informations 3D, l'amélioration de la couche de labélisation sémantique, et la classification des outils chirurgicaux. Pour finir, un enrichissement du jeu de données et des annotations de plus haute précision seront nécessaires. / Despite modern-life technological advances and tremendous progress made in surgical techniques including MIS, today's OR is facing many challenges remaining yet to be addressed. The development of CAS systems integrating the SPM methodology was born as a response from the medical community, with the long-term objective to create surgical cockpit systems. Being able to identify surgical tools in use is a key component for systems relying on the SPM methodology. Towards that end, this thesis work has focused on real-time surgical tool detection from microscope 2D images. From the review of the literature, no validation data-sets have been elected as benchmarks by the community. In addition, the neurosurgical context has been addressed only once. As such, the first contribution of this thesis work consisted in the creation of a new surgical tool data-set, made freely available online. Two methods have been proposed to tackle the surgical tool detection challenge. First, the adapted SquaresChnFtrs, evolution of one of the best computer vision state-of-the-art approach for pedestrian detection. Our second contribution, the ShapeDetector, is fully data-driven and performs detection without the use of prior knowledge regarding the number, shape, and position of tools in the image. Compared to previous works, we chose to represent candidate detections with bounding polygons instead of bounding boxes, hence providing more fitting results. For integration into medical systems, we performed different code optimization through CPU and GPU use. Speed gain and accuracy loss from the use of ad-hoc optimization strategies have been thoroughly quantified to find an optimal trade-off between speed and accuracy. Our ShapeDetector is running in-between 5 and 8Hz for 612x480 pixel video sequences.We validated our approaches using a detailed methodology covering the overall tool location, tip position, and orientation. Approaches have been compared and ranked conjointly with a set of competitive baselines. For suction tube detections, we achieved a 15% miss-rate at 0.1 FPPI, compared to a 55% miss-rate for the adapted SquaresChnFtrs. Future works should be directed toward the integration of 3D feature extraction to improve detection performance but also toward the refinement of the semantic labelling step. Coupling the tool detection task to the tool classification in one single framework should be further investigated. Finally, increasing the data-set in diversity, number of tool classes, and detail of annotations is of interest.
2

Video analysis for augmented cataract surgery / Analyse vidéo pour la chirurgie de la cataracte augmentée

Al Hajj, Hassan 13 July 2018 (has links)
L’ère numérique change de plus en plus le monde en raison de la quantité de données récoltées chaque jour. Le domaine médical est fortement affecté par cette explosion, car l’exploitation de ces données est un véritable atout pour l’aide à la pratique médicale. Dans cette thèse, nous proposons d’utiliser les vidéos chirurgicales dans le but de créer un système de chirurgie assistée par ordinateur. Nous nous intéressons principalement à reconnaître les gestes chirurgicaux à chaque instant afin de fournir aux chirurgiens des recommandations et des informations pertinentes. Pour ce faire, l’objectif principal de cette thèse est de reconnaître les outils chirurgicaux dans les vidéos de chirurgie de la cataracte. Dans le flux vidéo du microscope, ces outils sont partiellement visibles et certains se ressemblent beaucoup. Pour relever ces défis, nous proposons d'ajouter une caméra supplémentaire filmant la table opératoire. Notre objectif est donc de détecter la présence des outils dans les deux types de flux vidéo : les vidéos du microscope et les vidéos de la table opératoire. Le premier enregistre l'oeil du patient et le second enregistre les activités de la table opératoire. Deux tâches sont proposées pour détecter les outils dans les vidéos de la table : la détection des changements et la détection de présence d'outil. Dans un premier temps, nous proposons un système similaire pour ces deux tâches. Il est basé sur l’extraction des caractéristiques visuelles avec des méthodes de classification classique. Il fournit des résultats satisfaisants pour la détection de changement, cependant, il fonctionne insuffisamment bien pour la tâche de détection de présence des outils sur la table. Dans un second temps, afin de résoudre le problème du choix des caractéristiques, nous utilisons des architectures d’apprentissage profond pour la détection d'outils chirurgicaux sur les deux types de vidéo. Pour surmonter les défis rencontrés dans les vidéos de la table, nous proposons de générer des vidéos artificielles imitant la scène de la table opératoire et d’utiliser un réseau de neurones à convolutions (CNN) à base de patch. Enfin, nous exploitons l'information temporelle en utilisant un réseau de neurones récurrent analysant les résultats de CNNs. Contrairement à notre hypothèse, les expérimentations montrent des résultats insuffisants pour la détection de présence des outils sur la table, mais de très bons résultats dans les vidéos du microscope. Nous obtenons des résultats encore meilleurs dans les vidéos du microscope après avoir fusionné l’information issue de la détection des changements sur la table et la présence des outils dans l’oeil. / The digital era is increasingly changing the world due to the sheer volume of data produced every day. The medical domain is highly affected by this revolution, because analysing this data can be a source of education/support for the clinicians. In this thesis, we propose to reuse the surgery videos recorded in the operating rooms for computer-assisted surgery system. We are chiefly interested in recognizing the surgical gesture being performed at each instant in order to provide relevant information. To achieve this goal, this thesis addresses the surgical tool recognition problem, with applications in cataract surgery. The main objective of this thesis is to address the surgical tool recognition problem in cataract surgery videos.In the surgical field, those tools are partially visible in videos and highly similar to one another. To address the visual challenges in the cataract surgical field, we propose to add an additional camera filming the surgical tray. Our goal is to detect the tool presence in the two complementary types of videos: tool-tissue interaction and surgical tray videos. The former records the patient's eye and the latter records the surgical tray activities.Two tasks are proposed to perform the task on the surgical tray videos: tools change detection and tool presence detection.First, we establish a similar pipeline for both tasks. It is based on standard classification methods on top of visual learning features. It yields satisfactory results for the tools change task, howev-lateer, it badly performs the surgical tool presence task on the tray. Second, we design deep learning architectures for the surgical tool detection on both video types in order to address the difficulties in manually designing the visual features.To alleviate the inherent challenges on the surgical tray videos, we propose to generate simulated surgical tray scenes along with a patch-based convolutional neural network (CNN).Ultimately, we study the temporal information using RNN processing the CNN results. Contrary to our primary hypothesis, the experimental results show deficient results for surgical tool presence on the tray but very good results on the tool-tissue interaction videos. We achieve even better results in the surgical field after fusing the tool change information coming from the tray and tool presence signals on the tool-tissue interaction videos.
3

Surgical tools localization in 3D ultrasound images / Localisation d'outils thérapeutiques de forme linéaire par imagerie ultrasonore 3D

Uhercik, Marian 20 April 2011 (has links)
Cette thèse traite de la détection automatique d’outils chirurgicaux de géométrie linéaire tels que des aiguilles ou des électrodes en imagerie ultrasonore 3D. Une localisation précise et fiable est nécessaire pour des interventions telles que des biopsies ou l’insertion d’électrode dans les tissus afin d’enregistrer leur activité électrique (par exemple dans le cortex cérébral). Le lecteur est introduit aux bases de l’imagerie ultrasonore (US) médicale. L’état de l’art des méthodes de localisation est rapporté. Un grand nombre de méthodes sont basées sur la projection comme la transformation de Hough ou la Projection Intégrale Parallèle (PIP). Afin d’améliorer l’implantation des méthodes PIP connues pour être assez lentes, nous décrivons une possible accélération par approche multirésolution. Nous proposons d’utiliser une méthode d’ajustement de modèle utilisant une approche RANSAC et une optimization locale. C’est une méthode rapide permettant un traitement temps réel et qui a l’avantage d’être très robuste en présence d’autres structures fortement échogènes dans le milieu environnant. Nous proposons deux nouveaux modèles d’apparence et de forme de l’outil dans les images US 3D. La localisation de l’outil peut être améliorée en exploitant son aspect tubulaire. Nous proposons un modèle d’outil utilisant un filtrage rehausseur de ligne que nous avons incorporé dans le schéma de recherche de modèle. La robustesse de cet algorithme de localisation est améliorée au prix d’un temps additionnel de pré-traitement. La localisation temps-réel utilisant le modèle de forme est démontrée par une implantation sur l’échographe Ultrasonix RP. Toutes les méthodes proposées on été testée sur des données de simulation US, des données de fantômes (qui sont des tissus synthétiques imitant les tissus biologiques) ainsi que sur des données réelles de biopsie du sein. Les méthodes proposées ont montré leur capacité à produire des résultats similaires en terme de précision mais en limitant d’avantage le nombre d’échecs de détection par rapport aux méthodes de l’état de l’art basées sur les projections. / This thesis deals with automatic localization of thin surgical tools such as needles or electrodes in 3D ultrasound images. The precise and reliable localization is important for medical interventions such as needle biopsy or electrode insertion into tissue. The reader is introduced to basics of medical ultrasound (US) imaging. The state of the art localization methods are reviewed in the work. Many methods such as Hough transform (HT) or Parallel Integral Projection (PIP) are based on projections. As the existing PIP implementations are relatively slow, we suggest an acceleration by using a multiresolution approach. We propose to use model fitting approach which uses randomized sample consensus (RANSAC) and local optimization. It is a fast method suitable for real-time use and it is robust with respect to the presence of other high-intensity structures in the background. We propose two new shape and appearance models of tool in 3D US images. Tool localization can be improved by exploiting its tubularity. We propose a tool model which uses line filtering and we incorporated it into the model fitting scheme. The robustness of such localization algorithm is improved at the expense of additional time for pre-processing. The real-time localization using the shape model is demonstrated by implementation on the 3D US scanner Ultrasonix RP. All proposed methods were tested on simulated data, phantom US data (a replacement for a tissue) and real tissue US data of breast with biopsy needle. The proposed methods had comparable accuracy and the lower number of failures than the state of the art projection based methods.

Page generated in 0.0637 seconds