• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Assessment of novel Advanced Oxidation Processes for the Simultaneous Disinfection and Decontamination of Water

Berruti, Ilaria 30 May 2022 (has links)
[ES] El mundo se enfrenta a una profunda crisis asociada al agua y la reutilización de aguas residuales urbanas (UWW), especialmente en agricultura, se presenta como una posible solución para abordar este problema. No obstante, la reutilización se debe promover dentro de unos límites mínimos de calidad del agua, los cuales pueden alcanzarse mediante la implementación de eficientes tratamientos terciaros en las actuales plantas de tratamiento de aguas residuales urbanas. En las últimas décadas, los Procesos de Oxidación Avanzada (POA), basados en la generación de especies reactivas del oxígeno altamente oxidantes y no selectivas, se han planteado como alternativa a los tratamientos convencionales para desinfección y descontaminación de agua residual. El objetivo general de este estudio es, por tanto, la evaluación de nuevos POA para desinfección y descontaminación simultánea de agua, investigando: (i) fotocatálisis heterogénea solar con ZnO modificado (Ce, Yb y Fe) y TiO2-P25 de referencia, (ii) peroximonosulfato (PMS) bajo radiación solar natural (PMS/Solar), (iii) POA basados en radical sulfato utilizando PMS y radiación UV-C (PMS/UV-C) y (iv) combinación de ZnO modificado con PMS como estrategia de tratamiento. Los objetivos biológicos y químicos analizados en este estudio fueron: tres patógenos de impacto en salud humana (dos bacterias gram-negativas Escherichia coli, Pseudomonas spp y una gram-positiva Enterococcus spp) y tres Contaminantes de Preocupación Emergente (CE) (Diclofenaco-DCF, Sulfametoxazol-SMX y Trimetoprim-TMP). La fotoactividad de ZnO modificado con Ce, Yb o Fe se evaluó a escala de laboratorio (200 mL), obteniendo buenas cinéticas de inactivación bacteriana y degradación de CE. El ZnO-Ce mostró el mejor rendimiento, no obstante, se descartó el escalado de este proceso tanto su aplicación directa, considerando su similar eficiencia en comparación con TiO2-P25 y por el alto coste del tratamiento, como en combinación con PMS, por la la liberación de Zn2+ al agua tratada. El uso directo de PMS como agente oxidante para el tratamiento de agua y UWW se ha demostrado en este estudio, aumentado su eficiencia al ser el sistema irradiado tanto con lámparas UV-C como con luz solar natural. Se han postulado diferentes mecanismos de inactivación y degradación de CE para cada tipo de irradiación: activación de PMS para generar radicales (con fotones UV-C) y la no activación o mecanismo de oxidación directo (con luz solar natural). La capacidad de los procesos PMS/Solar y PMS/UV-C se evaluó en UWW a escala de planta piloto en un Colector Parabólico Compuesto (10 L) y en una planta piloto de UV-C (80 L), respectivamente. El mejor rendimiento de tratamiento se alcanzó con una concentración de PMS de 1 mM en ambos casos, logrando una inactivación exitosa de todos los objetivos microbianos (incluyendo bacterias resistentes a antibióticos), sin observar recrecimiento bacteriano tras 48 h y eliminando de manera eficiente los CE. Por otro lado, la eliminación eficiente de genes de resistentes a antibióticos y productos de transformación se obtuvo con PMS/UV-C, mientras que éstos parámetros siguen siendo un reto a abordar en el caso del proceso PMS/Solar. En ningún caso se observó toxicidad del agua tratada para Aliivibrio fischeri, excluyendo un efecto nocivo para el medio ambiente receptor del efluente, y solo un leve efecto fitotóxico en el crecimiento de dos de las tres semillas analizadas (L. sativum y S. alba), indicando la idoneidad del efluente para su reutilización en riego. Finalmente, el análisis de costes demostró que este factor clave podría ser una barrera importante para la implementación del proceso PMS/Solar en plantas centralizadas de tratamiento de UWW. No obstante, su consideración como sistemas descentralizados asociados a pequeños volúmenes de agua en zonas con alta incidencia de radiación solar, ahorrando costes energéticos mediante el aprovechamiento de la luz solar, podría ser una opción real y asequible. / [CA] El món s'enfronta a una profunda crisi associada a l'aigua i la reutilització d'aigües residuals urbanes (UWW), especialment en agricultura, es presenta com una possible solució per a abordar aquest problema. No obstant això, la reutilització s'ha de promoure dins d'uns límits mínims de qualitat de l'aigua, els quals poden aconseguir-se mitjançant la implementació d'eficients tractaments terciaris en les actuals plantes de tractament d'aigües residuals urbanes. En les últimes dècades, els Processos Avançats d'Oxidació (PAO), basats en la generació d'espècies reactives d'oxigen altament oxidants i no selectives, s'han plantejat com a alternativa als tractaments convencionals per a desinfecció i descontaminació d'aigua residual. L'objectiu general d'aquest estudi és, per tant, l'avaluació de nous POA per a desinfecció i descontaminació simultània d'aigua, investigant: (i) fotocatàlisi heterogènia solar amb ZnO modificat (Ce, Yb i Fe) i TiO2-P25 de referència, (ii) peroximonosulfat (PMS) baix radiació solar natural (PMS/Solar), (iii) POA basats en radical sulfat utilitzant PMS i radiació UV-C (PMS/UV-C) i (iv) combinació de ZnO modificat amb PMS com a estratègia de tractament. Els objectius biològics i químics analitzats en aquest estudi van ser: tres patògens d'impacte en salut humana (dos bacteris gram-negatius Escherichia coli, Pseudomonas spp i un gram-positiu Enterococcus spp) i tres Contaminants de Preocupació Emergent (CE) (Diclofenac-DCF, Sulfametoxazol-SMX i Trimetoprim-TMP). La fotoactivitat de ZnO modificat amb Ce, Yb o Fe es va avaluar a escala de laboratori (200 mL), obtenint bones cinètiques d'inactivació bacteriana i degradació de CE. El ZnO-Ce va mostrar el millor rendiment, no obstant això, es va descartar l'escalat d'aquest procés tant mitançant la seua aplicació directa o com en combinació amb PMS, considerant la seua similar eficiència en comparació amb TiO2-P25, l'alt cost del tractament i l'alliberament de Zn2+ a l'aigua tractada. L'ús directe de PMS com a agent oxidant per al tractament d'aigua i UWW s'ha demostrat en aquest estudi, augmentat la seua eficiència quan el sistema és irradiat tant amb llums UV-C com amb llum solar natural. S'han postulat diferents mecanismes d'inactivació i degradació de CE per a cada tipus d'irradiació: activació de PMS per a generar radicals (amb fotons UV-C) i la no activació o mecanisme d'oxidació directe (amb llum solar natural). La capacitat dels processos PMS/Solar i PMS/UV-C es va avaluar en UWW a escala de planta pilot en un Col·lector Parabòlic Compost (10 L) i en una planta pilot d'UV-C (80 L), respectivament. El millor rendiment de tractament es va aconseguir amb una concentració de PMS d'1 mm en tots dos casos, aconseguint una inactivació reeixida de tots els objectius microbians (incloent bacteris resistents a antibiòtics), sense observar recreixement bacterià després de 48 h i eliminant de manera eficient els CE. D'altra banda, l'eliminació eficient de gens de resistents a antibiòtics i productes de transformació es va obtindre amb PMS/UV-C, mentre que aquests paràmetres continuen sent un repte a abordar en el cas del procés PMS/Solar. En cap cas es va observar toxicitat a l'aigua tractada per a Aliivibrio fischeri, excloent un efecte nociu per al medi ambient receptor de l'efluent, i només un lleu efecte fitotòxic en el creixement de dos de les tres llavors analitzades (L. sativum i S. alba), indicant la idoneïtat de l'efluent per a la seua reutilització en reg. Finalment, l'anàlisi de costos va demostrar que aquest factor clau podria ser una barrera important per a la implementació del procés PMS/Solar en plantes centralitzades de tractament de UWW. No obstant això, la seua consideració com a sistemes descentralitzats associats a xicotets volums d'aigua en zones amb alta incidència de radiació solar, estalviant costos energètics mitjançant l'aprofitament de la llum solar, podria ser una opció real i assequible. / [EN] It is well recognized that the world is facing a water crisis and the reuse of urban wastewater (UWW) in agriculture, has been gaining attention as a reliable solution to address this problem. It is mandatory to promote the safe water reuse and minimum water quality limits could be achieved by upgrading the Urban Wastewater Treatment Plants, through the addition of an efficient tertiary treatment. In the last decades, Advanced Oxidation Processes (AOPs), relying on the potential generation of highly oxidant, reactive and non-selective Reactive Oxygen Species (ROS), have been raised as alternative to conventional treatments for both water disinfection and decontamination. The general aim of this study is the assessment of novel AOPs for the simultaneous disinfection and decontamination of water, investigating (i) solar heterogeneous photocatalysis, involving modified ZnO with Ce, Yb and Fe and the benchmark TiO2-P25, (ii) peroxymonosulfate (PMS) under natural solar radiation (PMS/Solar), (iii) Sulfate radical-based AOPs (SR-AOPs) involving PMS and UV-C radiation (PMS/UV-C) and (iv) combination of the best-performing photocatalytic material with PMS (PMS/modified ZnO). The involved biological and chemical targets in this study were: three human health impact pathogens (two gram-negative bacteria Escherichia coli, Pseudomonas spp. and the gram-positive Enterococcus spp.) and three Contaminants of Emerging Concern (CECs, Diclofenac-DCF, Sulfamethoxazole-SMX and Trimethoprim-TMP). Photoactivity of modified ZnO with Ce, Yb or Fe was assessed in 200-mL vessel reactors, attaining good target's removal kinetic rates. Best performing material was ZnO-Ce, but its feasibility for a further up-scaling was discarded both as photocatalyst alone, considering the similar performances obtained, compared to TiO2-P25 and the high treatment cost, and in combination with PMS, due to the release of high amount of Zn2+. PMS alone has been proven to be an effective oxidant agent for water and UWW treatment, increasing its effectiveness when illuminated with photons from UV-C lamps and natural sunlight. Nevertheless, different inactivation and CECs degradation mechanisms have been postulated for each type of irradiation, and according to the activation of PMS (with UV-C photons) or non-activation (under natural sunlight). The capability of PMS/Solar and PMS/UV-C processes were evaluated in actual UWW at pilot plant scale in 10-L Compound Parabolic Collector and in 80L UV-C pilot plant, respectively. Optimal load of PMS was found to be 1 mM in both cases, achieving successful inactivation of natural occurring bacteria and their antibiotic resistant counterparts, without observing bacterial regrowth after 48h and efficiently eliminating CECs. Efficient removal of antibiotic resistant genes (ARGs) and transformation products (TPs) was obtained by PMS/UV-C, while their elimination is still a challenge to be addressed in PMS/Solar process. Reclaimed UWW obtained by both PMS/Solar and PMS/UV-C process showed no toxicity towards Aliivibrio fischeri, excluding a harmful effect towards the receiving aquatic environment after effluent discharge, and a very slightly phytotoxic effect for growth of two out of the three tested seeds (L. sativum and S. alba), indicating the suitability of this water for its subsequent reuse for agriculture. The analysis of the treatment cost revealed that this key factor could be an important barrier for implementation of PMS/Solar process in large centralized UWW treatment plants. Nevertheless, its consideration as decentralized systems associated to small volume of water in areas with a high solar radiation incidence, saving energy costs by using natural solar radiation, could be a real and affordable option. / Berruti, I. (2022). Assessment of novel Advanced Oxidation Processes for the Simultaneous Disinfection and Decontamination of Water [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/183052
12

Diseño y síntesis de nuevos fotocatalizadores para el tratamiento de aguas residuales

Cabezuelo Gandía, Oscar 02 September 2024 (has links)
[ES] Las tecnologías convencionales para el tratamiento de aguas contaminadas no logran abordar la eliminación de contaminantes de preocupación emergente (CECs), lo que subraya la necesidad de implementar nuevas estrategias aplicables a escala industrial. Los Procesos de Oxidación Avanzada (AOPs) surgen como una opción prometedora para la eliminación de contaminantes orgánicos, gracias a su capacidad para generar especies altamente reactivas como los radicales hidroxilo en concentraciones suficientes para purificar el agua. En este contexto, el objetivo principal de esta Tesis Doctoral es diseñar y sintetizar fotocatalizadores destinados a la remediación de aguas residuales con contaminantes orgánicos. En una primera etapa, se abordó la derivatización covalente de un conocido colorante, la Riboflavina (RF), sobre partículas de sílice (SiO2@RF) con el fin de generar una superficie altamente cargada de este colorante orgánico y así modificar sus propiedades fotofísicas. Tras estudiar los procesos fotocatalíticos de eliminación de contaminantes y realizar una exhaustiva caracterización fotofísica, se postuló un nuevo mecanismo fotocatalítico para este nuevo fotocatalizador heterogéneo. Así, debido a la gran proximidad entre las moléculas de Riboflavina en la superficie del fotocatalizador SiO2@RF se evitó que el colorante experimentara cruce intersistemas, excluyendo así la formación del estado excitado triplete y, por lo tanto, del oxígeno singlete. Consecuentemente, se mejoró la fotoestabilidad de la riboflavina heterogenizada en el fotocatalizador SiO2@RF respecto a su comportamiento en medio homogéneo. A su vez, el proceso de fotocatálisis heterogénea de degradación de contaminantes ocurrió mediante reacciones de transferencia electrónica desde el estado excitado singlete. A continuación, se exploró la influencia del grosor de la capa de TiO2 en la eficiencia fotocatalítica de fotocatalizadores soportados de SiO2@TiO2. El objetivo principal fue optimizar la eficiencia del TiO2 en los procesos fotocatalíticos de degradación de contaminantes. Se introdujeron modificaciones en el método sintético sol-gel para los fotocatalizadores SiO2@TiO2, controlando tanto la velocidad de formación como el grosor de la capa de TiO2 sobre las esferas de SiO2. Tras caracterizarlos, se evaluó la eficiencia fotocatalítica en relación con la cantidad de TiO2 presente en cada fotocatalizador SiO2@TiO2. Los resultados revelaron una dependencia significativa de la actividad fotocatalítica con el grosor de la capa de TiO2, que se correlacionó con la respuesta de la fotoluminiscencia de cada muestra. En este sentido, se llevó a cabo la síntesis y caracterización de un fotocatalizador de SiO2@TiO2, así como de lana de vidrio recubierta con TiO2 (GW_TiO2). Estos materiales fueron desarrollados para eliminar un CEC, el sulfametoxazol (SMX), en una matriz simulada de aguas urbanas. Se exploró la incorporación de nanocristales de Fe3O4 en la capa del fotocatalizador SiO2@TiO2 con la intención de que actúen como trampas para los electrones fotogenerados y así, minimizar su recombinación al tiempo que ayudan a la recuperación del fotocatalizador del medio de reacción. La sinergia entre el TiO2 y el Fe3O4 en el nuevo fotocatalizador SiO2@TiO2@Fe3O4 se evaluó en la eliminación de un contaminante orgánico modelo bajo radiación UV-A. Los resultados mostraron que el Fe3O4 unido al TiO2 puede desarrollar reacciones de foto-Fenton a pH neutro. Se evaluaron H2O2 y PMS como promotores de radicales, mejorando en gran medida el poder foto-oxidativo del nuevo fotocatalizador SiO2@TiO2@Fe3O4. Así, el PMS fue más eficiente que el H2O2. Finalmente, se diseñó y sintetizó un nuevo compuesto macroscópico que mejoraba las propiedades fotocatalíticas de los existentes. Este nuevo material está constituido por micropartículas de SiO2@TiO2 unidas covalentemente a lana de vidrio. El material final se implementó en un fotorreactor de flujo continuo especialmente diseñado. / [CA] Les tecnologies convencionals per al tractament d'aigües contaminades no aconsegueixen abordar l'eliminació de contaminants de preocupació emergent (CECs), el que subratlla la necessitat d'implementar noves estratègies que tinguin aplicació a escala industrial. Els Processos d'Oxidació Avançada (AOPs) emergeixen com una opció prometedora per a l'eliminació de contaminants orgànics, gràcies a la seva capacitat per generar espècies altament reactives com els radicals hidroxil en concentracions suficients per purificar l'aigua. Aquí, l'objectiu principal de la present Tesi Doctoral és el disseny i la síntesi de fotocatalitzadors destinats a la remediació d'aigües residuals amb contaminants orgànics. En una primera etapa, es va abordar la derivatització covalent d'un conegut colorant, la Riboflavina (RF), sobre partícules de sílice (SiO2@RF) amb la finalitat de generar una superfície altament carregada d'aquest colorant orgànic i així modificar les seves propietats fotofísiques. Després d'estudiar els processos fotocatalítics d'eliminació de contaminants i realitzar una exhaustiva caracterització fotofísica, es va postular un nou mecanisme fotocatalític per aquest nou fotocatalitzador heterogeni. Així, a causa de la gran proximitat entre les molècules de Riboflavina en la superfície del fotocatalitzador SiO2@RF es va evitar que el colorant experimentés creuament intersistemes, excloent així la formació de l'estat excitat triplet i, per tant de l'oxigen singlet. Conseqüentment, es va millorar la fotoestabilitat de la riboflavina heterogenitzada en el fotocatalitzador SiO2@RF respecte al seu comportament en medi homogeni. Al seu torn, el procés de fotocatàlisi heterogènia de degradació de contaminants va ocórrer mitjançant reaccions de transferència electrònica des de l'estat excitat singlet. A continuació, es va explorar la influència de l'espessor de la capa de TiO2 en l'eficiència fotocatalítica de fotocatalitzadors suportats de SiO2@TiO2. L'objectiu principal va ser optimitzar l'eficiència del TiO2 en els processos fotocatalítics de degradació de contaminants. Es van introduir modificacions en el mètode sintètic sol-gel per als fotocatalitzadors SiO2@TiO2, controlant tant la velocitat de formació com l'espessor de la capa de TiO2 sobre les esferes de SiO2. Després de caracteritzar-los, es va avaluar l'eficiència fotocatalítica en relació amb la quantitat de TiO2 present en cada fotocatalitzador SiO2@TiO2. Els resultats van revelar una dependència significativa de l'activitat fotocatalítica amb l'espessor de la capa de TiO2, que es va correlacionar amb la resposta de la fotoluminiscència de cada mostra. En aquest sentit, es va dur a terme la síntesi i caracterització d'un fotocatalitzador de SiO2@TiO2, així com de llana de vidre recoberta amb TiO2 (GW_TiO2). Aquests materials van ser desenvolupats per eliminar un CEC, el sulfametoxazol (SMX), en una matriu simulada d'aigües urbanes. Es va explorar la incorporació de nanocristalls de Fe3O4 en la capa del fotocatalitzador SiO2@TiO2 amb la intenció que actuïn com a trampes per als electrons fotogenerats i així, minimitzar la seva recombinació alhora que ajudin a la recuperació del fotocatalitzador del medi de reacció. La sinergia entre el TiO2 i el Fe3O4 en el nou fotocatalitzador SiO2@TiO2@Fe3O4 es va avaluar en l'eliminació d'un contaminant orgànic model sota radiació UV-A. Els resultats van mostrar que el Fe3O4 unit al TiO2 pot desenvolupar reaccions de foto-Fenton a pH neutre. Es van avaluar H2O2 i PMS com a promotors de radicals, millorant en gran mesura el poder foto-oxidatiu del nou fotocatalitzador SiO2@TiO2@Fe3O4. Així, el PMS va ser més eficient que el H2O2. Finalment, es va dissenyar i sintetitzar un nou composite macroscòpic que millorava les propietats fotocatalítiques dels existents. Aquest nou materialestà constituït per micropartícules de SiO2@TiO2 unides covalentment a llana de vidre. El material final es va implementar a un fotorreactor de flux continu. / [EN] Conventional technologies for treating contaminated water fail to address the removal of emerging contaminants of concern (CECs), highlighting the need for implementing new strategies applicable on an industrial scale. Among the various techniques used in contaminated water treatment, Advanced Oxidation Processes (AOPs) emerge as a promising option for organic contaminant removal, thanks to their ability to generate highly reactive species like hydroxyl radicals in sufficient concentrations to purify water. In this context, the main objective of this doctoral thesis is to design and synthesize photocatalysts for the remediation of wastewater with high concentrations of organic pollutants. First, the covalent derivatization of Riboflavin (RF) onto silica particles (SiO2@RF) was addressed to generate a highly charged surface of this organic dye and modify its photophysical properties. After studying the photocatalytic processes for contaminant removal and conducting the photophysical characterization, a new photocatalytic mechanism for this novel heterogeneous photocatalyst was proposed. Due to the close distance between Riboflavin molecules on the surface of the SiO2@RF photocatalyst, it prevented the dye from undergoing intersystem crossing, thus excluding the formation of the triplet excited state and therefore singlet oxygen. Consequently, the photo-stability of heterogenized riboflavin in the SiO2@RF photocatalyst was improved compared to its behavior in homogeneous media. Furthermore, the heterogeneous photocatalysis process for contaminant degradation occurred through electron transfer reactions from the singlet excited state. In the subsequent stage of research, the influence of the TiO2 layer thickness on the photocatalytic efficiency of supported photocatalysts SiO2@TiO2 was explored. The main objective was to optimize the efficiency of TiO2 in photocatalytic processes for contaminant degradation. Additionally, modifications were introduced in the sol-gel synthetic method for SiO2@TiO2 photocatalysts, intending to control both the rate of formation and the thickness of the TiO2 layer on the SiO2 spheres. After conducting a comprehensive characterization of these materials, the photocatalytic efficiency was evaluated in relation to the amount of TiO2 present in each SiO2@TiO2 photocatalyst. The results revealed a significant dependence of the photocatalytic activity on the thickness of the TiO2 layer, which correlated with the photoluminescence response of each sample. In this context, the synthesis and characterization of a SiO2@TiO2 photocatalyst, as well as glass wool coated with TiO2 (GW_TiO2), were carried out with the aim of eliminating an emerging contaminant of concern (CEC), sulfamethoxazole (SMX), in a simulated matrix of urban water under solar radiation. Furthermore, the incorporation of Fe3O4 nanocrystals into the shell of the SiO2@TiO2 photocatalyst was explored with the intention of acting as traps for photogenerated electrons, thereby minimizing their recombination while aiding in the recovery of the photocatalyst from the reaction medium. The synergy between TiO2 and Fe3O4 in the new SiO2@TiO2@Fe3O4 photocatalyst was evaluated in the removal of a model organic contaminant under UV-A radiation. The results showed that Fe3O4 attached to TiO2 can perform photo-Fenton reactions at neutral pH. Additionally, H2O2 and peroxymonosulfate (PMS) were evaluated as radical promoters, enhancing the photo-oxidative power of the SiO2@TiO2@Fe3O4 photocatalyst. Hence, PMS was more efficient than H2O2. Finally, a new macroscopic composite was designed and synthesized to improve the photocatalytic properties of existing ones. This new material consists of SiO2@TiO2 microparticles covalently bonded to glass wool, which in turn was coated with a layer of TiO2 crystals of optimized thickness according to previous chapter investigations (approximately 30 nm). The photocatalyst was implemented in a continuous flow photoreactr / Cabezuelo Gandía, O. (2024). Diseño y síntesis de nuevos fotocatalizadores para el tratamiento de aguas residuales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/207353

Page generated in 0.0547 seconds