Spelling suggestions: "subject:"exidative degradation"" "subject:"boxidative degradation""
11 |
Fotooxidação do compósito poli (óxido de etileno)/Montmorilonita: influência da argila e de fotoestabilizantes / Photo-oxidation of poly (ethylene oxide)/Montmorillonite composites: influence of the clay and photostabilizersPatricia Coelho Lombardo 10 February 2012 (has links)
Compósitos de Poli (óxido de etileno) (PEO) com diferentes concentrações de argila montmorilonita SWy-1 foram preparados pelo método de intercalação em solução. Os filmes obtidos foram caracterizados por difração de raios X (DRX), microscopia eletrônica de varredura (MEV) e espectrocopia de infravermelho com transformada de Fourier (FTIR). Os resultados de DRX mostraram que os compósitos obtidos foram do tipo intercalados. As imagens de MEV indicaram a existência de agregados de argila SWy-1 dispersos na matriz polimérica. A influência da argila na estabilidade térmica e na cristalização do PEO foi estudada por termogravimetria (TG) e calorimetria exploratória diferencial (DSC). As curvas TG mostraram que a temperatura inicial de degradação térmica (Ti) diminui com o aumento da concentração de SWy-1. Além disso, uma pequena diminuição na amplitude do pico de fusão do PEO foi observado nos resultados de DSC. Os filmes de PEO e dos compósitos de PEO/SWy-1 foram irradiados com luz UV e a fotooxidação foi acompanhada por cromatografia de exclusão por tamanho (SEC). Os resultados de SEC mostraram que a taxa de oxidação do PEO puro foi mais rápida em comparação aos compósitos de PEO/SWy-1. Nesse caso a argila pode ser considerada como um estabilizante contra a irradiação UV. O efeito de estabilizantes do tipo absorverdores de UV (moléculas derivadas da 2-hidroxibenzofenona) e do tipo HALS (Tinuvin 770), quando adicionados ao PEO e ao compósito de PEO/SWy-1, também foi analisado por SEC após a fotooxidação dos filmes. Os resultados mostraram que a adição do estabilizante Tinuvin 770 proporcionou maior estabilidade a matriz polimérica durante o processo degradativo, comparado ao estabilizante 2-hidroxibenzofenona. / Poly(ethylene oxide) (PEO) composites with different concentrations of SWy-1 montmorillonite clay were prepared by solution intercalation method. The thin films obtained were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The XRD results showed that the composites obtained were of the type intercalated. The SEM images have indicated that there are SWy-1 clay aggregates scattered in the polymer matrix. The influence of clay on thermal stability, melting and polymer crystallization processes was studied by thermogravimetric analysis (TG) and differential scanning calorimetric (DSC). The TG curves showed that the initial thermal degradation temperature (Ti) decrease with increasing concentration of SWy-1. Besides, a small decrease in the amplitude of the melting peak of PEO was observed in the DSC results. The thin films of PEO and PEO/SWy-1 composites were exposed to UV irradiation and the photodegradation was accompanied by size exclusion chromatography (SEC). The SEC results showed that the rate of oxidation of pristine PEO was faster compared to PEO/SWy-1 composites. In this case the clay can be considered as a stabilizer against UV irradiation. The effect of UV absorbers (2-hydroxybenzophenone derivated molecules) and HALS (Tinuvin 770) stabilizers, when added to PEO and PEP/SWy-1 composites, also were studied by SEC after the thin films photodegradation. The results allowed to conclude that the polymer matrix became more stable for degradation with adition of Tinuvin 770 stabilizer when compared to 2-hydroxybenzophenone.
|
12 |
OXIDATIVE DEGRADATION OF LIGNIN AND INVESTIGATION OF UTILIZATION OF LIGNIN-DERIVED MATERIALS AS BUILDING BLOCKS FOR EPOXY RESINSFang, Zhen 01 January 2019 (has links)
Lignin, the second most abundant biopolymer on earth, is potentially a replaceable source for bulky fuels and chemical feedstocks. There have been numerous reports on methods for the oxidative cleavage of β-O-4 linkages but relatively few reports of how those methods affect other linkages that are present in lignin. We investigated how the β-1 and β-5 linkages respond under oxidative conditions proposed for lignin deconstruction based on their effect on β-O-4 linkages. Mechanochemical treatment of lignin can greatly improve the yield of monomer products and we applied a mechanochemical approach, using powerful ring-and-puck milling to promote lignin degradation. Along with similar production of monomers in a much shorter period than what we observed in previous ball-milling process, much more unexpected reactions were taking place during the current mechanochemical process.
Lignin is a promising feedstock for epoxy resins since lignin-derived aromatic monomers usually bear hydroxyl and carboxyl groups. We are working on utilizing these mono-aromatic compounds and highly-functionalized-lignin as precursors for preparation of epoxy thermosets. We are interested in investigating the properties of thermosets by utilizing the actual isolated monomer streams from raw lignin. We expect to observe attractive thermal and mechanical properties from these lignin-derived epoxy thermosets compare to that of the commercialized but currently limited-used BPA-based epoxy resins.
|
13 |
Influência da foto-oxidação no design de produtos : levantamentos técnico-científicos para reciclagem de produtos eletroeletrônicosDilly, Jaqueline January 2016 (has links)
No contexto em que vivemos é crescente a necessidade de reciclar materiais, principalmente, devido a questões que envolvam a redução dos impactos ambientais, como, por exemplo, a reciclagem de materiais para fabricação de produtos tecnológicos. Equipamentos eletroeletrônicos possuem grande potencial para reciclagem e são descartados diariamente. A degradação por foto-oxidação é um fator que pode influenciar nas propriedades dos polímeros que compõe um equipamento eletroeletrônico, e em sua reciclagem, mesmo em ambientes internos, pois o UVA tem capacidade de transpor janelas de vidro. Este estudo analisou alguns aspectos da foto-oxidação do poliestireno de alto impacto (PS-HI) reciclado de carcaças de impressoras, exposto à radiação UVA com base nas normas de envelhecimento ASTM G24 e G154. Amostras de PS-HI virgem e reciclado foram injetadas e expostas ao envelhecimento acelerado em laboratório por meio de grades, com a exposição total das amostras, e em máscara, com o direcionamento da radiação UVA em ponto determinado das amostras. As consequências da foto-oxidação nas propriedades das amostras foram caracterizadas por: Colorimetria, Espectroscopia de Infravermelho, Microscopia Eletrônica de Varredura e Análise Térmica Dinâmico Mecânico, com o objetivo de avaliar a degradação foto-oxidativa do poliestireno de alto impacto reciclado e caracterizar e as diferenças entre a exposição total e direcionada. Os resultados apontaram que as amostras recicladas expostas a radiação UVA não apresentaram mudanças consideráveis em relação as suas propriedades ou processabilidade quando comparado com o material virgem, pois a foto-oxidação ficou concentrada na superfície das amostras. / In today’s context it is increasingly necessary to recycle materials, such as the ones used in the manufacturing of technological products, mainly due to issues involving the reduction of environmental impact. Electronic devices are discarded daily and they have a great potential for recycling. Degradation by photo-oxidation is a factor that can influence the properties and the recycling of polymers that make up pieces of electronic equipment. This factor exists even indoors, because UVA is able to travel across glass windows. This study analyzes some aspects of the photo-oxidation of high impact polystyrene (HIPS) recycled from printer carcasses that were exposed to UVA under the ASTM G24 and G154 aging standards. Virgin and recycled HIPS samples were injected and exposed to an accelerated aging process in the laboratory through the use of pallets, with the total exposure of the samples, and masks with the targeted UVA exposure at certain points of the samples. The consequences of the photo-oxidation on the properties of the samples were characterized by: colorimetry, infrared spectroscopy, scanning electron microscopy and Dynamic Mechanical Thermal Analysis with the objectives of evaluating the degradation of recycled HIPS caused by photo-oxidation and characterizing the differences between pallet and mask exposure. The results showed that when compared to the virgin material, the recycled samples that were exposed to UVA radiation did not undergo significant changes regarding the properties and processability because the photo-oxidation effect remained focused on the areas near the surface of the samples.
|
14 |
Influência da foto-oxidação no design de produtos : levantamentos técnico-científicos para reciclagem de produtos eletroeletrônicosDilly, Jaqueline January 2016 (has links)
No contexto em que vivemos é crescente a necessidade de reciclar materiais, principalmente, devido a questões que envolvam a redução dos impactos ambientais, como, por exemplo, a reciclagem de materiais para fabricação de produtos tecnológicos. Equipamentos eletroeletrônicos possuem grande potencial para reciclagem e são descartados diariamente. A degradação por foto-oxidação é um fator que pode influenciar nas propriedades dos polímeros que compõe um equipamento eletroeletrônico, e em sua reciclagem, mesmo em ambientes internos, pois o UVA tem capacidade de transpor janelas de vidro. Este estudo analisou alguns aspectos da foto-oxidação do poliestireno de alto impacto (PS-HI) reciclado de carcaças de impressoras, exposto à radiação UVA com base nas normas de envelhecimento ASTM G24 e G154. Amostras de PS-HI virgem e reciclado foram injetadas e expostas ao envelhecimento acelerado em laboratório por meio de grades, com a exposição total das amostras, e em máscara, com o direcionamento da radiação UVA em ponto determinado das amostras. As consequências da foto-oxidação nas propriedades das amostras foram caracterizadas por: Colorimetria, Espectroscopia de Infravermelho, Microscopia Eletrônica de Varredura e Análise Térmica Dinâmico Mecânico, com o objetivo de avaliar a degradação foto-oxidativa do poliestireno de alto impacto reciclado e caracterizar e as diferenças entre a exposição total e direcionada. Os resultados apontaram que as amostras recicladas expostas a radiação UVA não apresentaram mudanças consideráveis em relação as suas propriedades ou processabilidade quando comparado com o material virgem, pois a foto-oxidação ficou concentrada na superfície das amostras. / In today’s context it is increasingly necessary to recycle materials, such as the ones used in the manufacturing of technological products, mainly due to issues involving the reduction of environmental impact. Electronic devices are discarded daily and they have a great potential for recycling. Degradation by photo-oxidation is a factor that can influence the properties and the recycling of polymers that make up pieces of electronic equipment. This factor exists even indoors, because UVA is able to travel across glass windows. This study analyzes some aspects of the photo-oxidation of high impact polystyrene (HIPS) recycled from printer carcasses that were exposed to UVA under the ASTM G24 and G154 aging standards. Virgin and recycled HIPS samples were injected and exposed to an accelerated aging process in the laboratory through the use of pallets, with the total exposure of the samples, and masks with the targeted UVA exposure at certain points of the samples. The consequences of the photo-oxidation on the properties of the samples were characterized by: colorimetry, infrared spectroscopy, scanning electron microscopy and Dynamic Mechanical Thermal Analysis with the objectives of evaluating the degradation of recycled HIPS caused by photo-oxidation and characterizing the differences between pallet and mask exposure. The results showed that when compared to the virgin material, the recycled samples that were exposed to UVA radiation did not undergo significant changes regarding the properties and processability because the photo-oxidation effect remained focused on the areas near the surface of the samples.
|
15 |
A Study of the Cause of Failure of Rotationally Molded, High-Density Polyethylene, Sodium Hypochlorite Storage TanksAbell, Dixon Harold 17 March 2011 (has links) (PDF)
The topic of chemical oxidative degradation in rotational molded polyethylene (high-density cross-linked) chemical (sodium hypochlorite) storage tanks is an industry problem that ranks at the top of current business issues for manufacturers of chemical storage tanks. The degradation of these tanks not only compromises the physical and mechanical properties of the tank material, but reduces the life expectancy of the tank, eventually resulting in catastrophic tank failure. Premature tank failure comes at a hefty cost. The reputation of the manufacturer is questioned often resulting in immediate loss of customer satisfaction and future business. The leaking of the chemical from the failed tank serves as a liable environmental hazard that jeopardizes the safety and welfare of its surroundings – people and environment. And the associated manufacturer of the failed tank is almost certainly responsible for the repair or replacement of the tank. All these associated problems and many more related to chemical tank failure cost this relatively small industry millions of dollars annually. The need to determine the failure mechanisms of these tanks is critically important. Such an understanding will provide industry with useful knowledge that will open the door for improvements in tank performance. There is no question that a deeper understanding of failure mechanisms will improve a tank manufacturer's reputation, increase business sales, and assure environmental safety. The addition of this knowledge will also instill consumer confidence in an industry that is considered to lack refined manufacturing processes and proven quality controls. Such advancements are keys to making rotational molding a cutting-edge, technology-driven process that prepares industry for future growth and development. The purpose of this research is to provide tested empirical data and proven expert analysis that can be utilized by companies in understanding the failure mechanisms of these tanks. The information regarding this topic was collected from various tank samples taken from Poly Processing, a leading manufacturer of rotationally molded polyethylene chemical storage tanks and producer of the examined samples, and Odyssey Manufacturing, a manufacturer of bulk sodium hypochlorite and the end user of the examined samples. In the final chapter of this research, a summary is presented of the important findings regarding the purpose of the thesis study.
|
16 |
Studies on the thermal degradation of thermosetting polyimides and their composites / Studier av termisk degradering i härdplastpolyimider och dess kompositerPetkov, Valeri January 2022 (has links)
The thesis contains a background and reflections section, an introduction, and three appended articles. The first section is reserved for some of the background and basics on polymers and polymer composites and a discussion on their effect on our everyday lives. The introduction gives a brief recap of the project. The articles contain the research that was performed on the thermal oxidation of thermosetting polyimides and their composites during the project. The first article covered the thermal oxidative degradation of satin weave and thin-ply composites made by resin transfer molding with carbon fibers and thermosetting polyimide. The degradation was studied by weight loss measurements and X-ray computed microtomography. The weight loss measurements showed that the initial desorption stage during ageing followed Fickian behavior and the proposed model. It was also observed that the satin weave composites formed crack clusters that grew into a network of cracks, voids and delaminations throughout the specimens as the ageing time progressed, while the thin-ply composites only formed delaminations at the free edges. The second manuscript studied the behavior of the neat polyimide resin when aged for up to 1500 hours in ambient air, and compared it with a newly developed polyimide formulation, with slightly altered chemical composition. The reduced amount of internal crosslinkers in the newer formulation was expected to enhance the fracture toughness of the material. Three-point bending, differential scanning calorimetry, dilatometry, weight loss, light optical microscopy and nanoindentation experiments were performed and highlighted the differences in the thermal and mechanical properties of the two formulations. A slight increase in the fracture toughness was observed, while the glass transition of the new formulation had decreased. The third manuscript was aimed at continuing the discussion from the second article on the differences between the two thermosetting polyimides. Thermogravimetric scans showed that the polyimide formulations behaved very similarly under thermal oxidative tests. The initial analysis gave indications that the model could capture well the degradation at high temperatures, but is not adequate in predicting long-term degradation at temperatures around 288–400 °C.
|
17 |
Kinetics Of Polymerization And Degradation By Non-Conventional TechniquesKarmore, Vishal K 02 1900 (has links)
Non-conventional techniques for polymerization and depolymerization were investigated. The rates of polymerization were enhanced higher in ultrasonic, supercritical fluids and microwaves. However in these system under certain conditions, simultaneous degradation also occurred. Depolymerization was studied by various methods like thermal degradation in supercritical fluids and in presence of oxidizers, Lewis acid and other organic acids. Degradation by ultrasound and thermal degradation of polymer mixtures were also investigated. The scission of the polymer backbone is random for thermal degradation while the scission occurs at the midpoint for ultrasonic degradation. The degradation rates in all the investigated techniques were higher than the degradation rates observed for pyrolysis. Degradation was possible at low temperature (< 50°C) for oxidative and ultrasound degradation while the degradation rates were two orders of magnitude higher in supercritical conditions. The molecular weight distribution was obtained by GPC analysis and the continuous distribution models were used to obtain the rate coefficients. The activation energies were calculated from the temperature dependence of the rate coefficients.
|
18 |
Lifetime prediction of a polymeric propellant binder using the Arrhenius approachBohlin, Johannes January 2021 (has links)
The thermal-oxidative degradation of a crosslinked hydroxy-terminated polybutadiene (HTPB)/cycloaliphatic diisocyanate (H12MDI) based polymer, which is commonly used as a polymeric binder in propellants, is investigated at temperatures from 95°C to 125°C with the aim of estimating the lifetime of the material in storage conditions (20°C) using the Arrhenius approach. Furthermore, the effect of antioxidants and to a lesser extent plasticizer on the degradation process was also studied. Diffusion-limited oxidation (DLO) was theoretically modelled and DLO conditions were estimated by gathering oxygen permeability and consumption data from similar studies. It was concluded that DLO-effects might be present at the highest experiment temperature (125°C) depending on the actual properties of the material investigated. The mechanical degradation was monitored by conducting tensile tests in a DMA apparatus and photographs using a microscope was taken to examine potential DLO effects. The degradation process of the stabilized polymer (with antioxidant) did not showcase Arrhenius behaviour, which was confirmed by the failure to construct a satisfactory mastercurve. This was most likely due to loss of antioxidants, resulting in autocatalytic oxidation(acceleration of the oxidation process). However, the induction period of the stabilized polymer showcased Arrhenius behaviour in the temperature region 95-125°C with an ~E_a = 90 kJ/mol. If the activation energy E_a is assumed to remain constant, the lifetime at ambient temperature (20°C) is predicted to be approximately 176 Years for a 2mm thick sample. However, this is probably an overestimation since curvature in the Arrhenius plot has been observed for many rubber materials in the lower temperature region. Assuming the E_a drops from ~90 kJ/mol to~71 kJ/mol, a more conservative lifetime prediction of 58 Years was estimated.
|
19 |
Étude des COV issus de la dégradation thermique et oxydative des matériaux polymères / Study of VOC emitted by thermal and oxidative degradation of polymeric materialsLatappy, Hubert 10 July 2014 (has links)
Les matériaux polymères sont aujourd'hui très présents dans notre environnement et deviennent irremplaçables pour de nombreuses applications : emballage, textile, mobilier,... La connaissance du cycle de vie de ces matériaux, de la production à leur destruction, devient importante pour nos sociétés. Par exemple ces matériaux peuvent émettre des Composés Organiques Volatils qui sont souvent toxiques et leur impact sur le milieu doit être évalué. L’objectif de ce travail de thèse a été de développer une méthode au laboratoire pour identifier et quantifier ces émissions. La difficulté provient de la grande diversité des composés qui peuvent être émis. Par ailleurs la méthode nécessite une fréquence de mesure élevée (temps réel) souvent incompatible avec les techniques actuelles. Une solution analytique couplant un four et un spectromètre de masse haute résolution associé à une méthode d’ionisation chimique contrôlée a été développée. Celle-ci est basée sur un spectromètre FT-ICR compact à bas champ magnétique : BTrap. Les points forts de cette technique sont la très haute résolution en masse qui permet de mesurer la masse exacte des composés et la détection multi composés, simultanée sur toute la gamme de masse. L’ionisation chimique contrôlée permet l'ionisation douce et quantitative des molécules d’intérêt. Le transfert de proton à partir de l’ion H₃O⁺ (PTRMS) a montré son potentiel pour la détection des COV dans de nombreux domaines. Après une présentation du contexte et du besoin, le dispositif expérimental développé est détaillé. La validation de celui-ci pour l'analyse de gaz traces a été effectuée au LPGP, sur un système de dépollution par plasma froid. Les résultats de dégradation de l'acétaldéhyde en fonction des conditions de fonctionnement du réacteur sont présentés.L’ionisation par PTR conduit habituellement à la molécule protonée ce qui simplifie l’identification. Cependant des fragmentations peuvent être observées. L’utilisation d’un précurseur d’ionisation chimique plus lourd et moins réactif que H₃O⁺ pourrait minimiser ces phénomènes. L’utilisation du diflurobenzène protoné a été testée et comparée à celle de l’ion H₃O⁺. Pour cela, des études cinétiques ont été menées sur une série d’alcools connus pour fragmenter avec H₃O⁺, et confirment l'intérêt du nouveau précurseur.Le poly(méthacrylate de méthyle) (PMMA) est un matériau très répandu : plexiglass. Sa dégradation est a priori relativement simple puisqu’il s’agit très majoritairement d’une dépolymérisation, accompagnée de la formation de produits minoritaires. En conséquence, son étude nous a paru intéressante pour la mise au point et la validation de la méthode. La dégradation du PMMA a été étudiée sous atmosphère inerte, puis oxydante. Les résultats obtenus sont présentés : produits émis, bilan en masse, et apport du suivi en temps réel de la dégradation, montrant en particulier que les produits minoritaires sont émis après le monomère.Enfin une dernière partie de conclusion présente les perspectives pour cette nouvelle méthode. / Polymeric materials are now ubiquitous in our environment and become irreplaceable for many applications such as packaging, textile or furniture. Knowledge of the life cycle of these materials from production to destruction becomes important for our societies. For instance, plastics may release Volatile Organic Compounds: VOCs are often toxic and their impact on the environment must be evaluated. The aim of this thesis work is the development of a laboratory method for identification and quantification of these emissions. The difficulty arises from the wide variety of compounds being potentially emitted. Moreover the desired method requires a high measurement rate ("real time") often incompatible with existing techniques. An analytical device coupling a furnace and a high-resolution mass spectrometer associated with a controlled chemical ionization method has been developed. This device is based on a low magnetic field FT-ICR compact mass spectrometer. The strengths of this technique are (i) high mass resolution allowing exact mass measurements, (ii) recording of the whole mass range simultaneously, allowing detection of a large variety of compounds. Controlled chemical ionization allows soft and quantitative ionization of molecules of interest. Proton transfer from H₃O⁺ ion (PTRMS) has shown its potentialities for VOC detection in many areas. After presenting the background and need, the developed experimental device is described in detail.The validation of this instrument for trace gas analysis has been performed at LPGP, using a nonthermal plasma depollution device. The results of acetaldehyde degradation according to operating conditions in the discharge reactor are presented.PTR ionization usually leads to the protonated molecule, so that identification is simplified. However fragmentations are sometimes observed. Use of a chemical ionization precursor ion heavier and less reactive than H₃O⁺ may minimize these drawbacks. Protonated difluorobenzene was selected as a precursor and its reactivity was tested and compared with H3O+ reactivity. In this purpose, kinetic studies were performed on a series of alcohols known for their fragmentation behavior with H₃O⁺. The results confirm the interest of the new precursor.Polymethyl methacrylate (PMMA) is a widespread material: plexiglass. Its degradation process is relatively simple since it consists in predominant depolymerization, along with formation of minor products. Consequently, PMMA study appeared interesting for method development and validation. Thermal degradation of PMMA has been studied under inert, then oxidative atmosphere conditions. The presented results include identification of minor products and mass balance under different temperature conditions. Real-time monitoring of VOC emission showed time differences in emission peaks of MMA monomer and minor products, each of them being emitted slightly later than MMA. Finally, a conclusive part presents the perspectives opened for this new method.
|
20 |
Beitrag zum Infrarotschweißen von Kunststoffen in der industriellen FertigungConstantinou, Marios 18 November 2021 (has links)
Das Infrarotschweißen ist ein industriell etabliertes Verfahren zur Herstellung von Bauteilen in unterschiedlichsten Anwendungsbereichen. Die Prozesseinrichtung ist jedoch mit einem hohen Kosten- und Zeitaufwand verbunden, da komplexe Strahler-Werkstoff-Wechselwirkungen das Aufschmelzverhalten des Kunststoffbauteils bestimmen. In vielen industriellen Infrarotschweißprozessen ist daher ein Rauchen der infraroterwärmten Bauteilbereiche zu beobachten. Eine Erforschung des Zusammenhangs zwischen Rauchbildung, Kunststofftemperatur, thermisch-oxidativer Belastung des Kunststoffs und den resultierenden mechanischen Schweißnahteigenschaften steht bislang aus. Weiterhin sind in Infrarotschweißprozessen in der industriellen Fertigung oftmals hohe Umstellzeiten und schwankende Fügeteiltemperaturen festzustellen. In der vorliegenden Arbeit werden erstmals die mechanischen Eigenschaften von Infrarotschweißverbindungen mit der Rauchbildung und thermisch-oxidativen Kunststoffbelastung korreliert und zwei Ansätze zur schonenden Erwärmung untersucht. Die Ergebnisse weisen nach, dass eine thermisch-oxidative Kunststoffschädigung zu einer Verschlechterung der mechanischen Schweißnahteigenschaften führt und bei der Auslegung industrieller Prozesse in Betracht gezogen werden muss. Das Schweißen in Argonatmosphäre und mit aktiver Strahlerleistungsregelung verhindern die Kunststoffzersetzung und führen in der Regel zu besseren mechanischen Schweißnahteigenschaften. Weiterhin wird deutlich, dass die Fügeteiltemperatur einen vernachlässigbaren Einfluss auf die Schweißnahteigenschaften hat, wohingegen Umstellzeiten ≥ 5 s eine erhebliche Reduzierung ebendieser zur Folge haben. Eine weitere Herausforderung ist das Infrarotschweißen (endlos-)faserverstärkter Kunststoffe. Die derzeit übliche Stumpfanordnung der Fügeteile führt zu einer Faserumlenkung in der Fügenaht und hat zur Folge, dass die Faserverstärkung nicht über die Fügeebene hinweg genutzt werden kann. Im Rahmen der Arbeit wird aufgrund dessen das überlappende Infrarotschweißen von Organoblechen untersucht. Um Bauteile aus Organoblechen mit erhöhter Komplexität, Größe und Steifigkeit herstellen zu können, werden zudem zwei industriell nutzbare Verfahrensvarianten auf Basis des Infrarotschweißens entwickelt. Unter Nutzung dieser, können Organoblechhohlkörper mit Überlappverbindungen gefertigt werden. Die Ergebnisse zeigen, dass sowohl in Plattenprobekörpern als auch in Hohlkörpern eine Nutzung der Faserverstärkung über die Fügeebene hinweg möglich ist.:1 Einleitung und Zielsetzung
2 Grundlagen und Stand der Technik
3 Experimentelles
4 Analyseverfahren
5 Ergebnisse zum Stumpfschweißen
6 Ergebnisse zum Überlappschweißen
7 Bewertung der Ergebnisse
8 Zusammenfassung und Ausblick / The infrared welding is a well-established process in the industrial production of parts in various applications. However, the complex emitter-material interaction, which influences the meltdown behaviour of the plastic parts, results in a high effort for the process setup. A smoking of the plastic parts is to observe in numerous industrial infrared welding processes. The correlations between the smoking of the plastic, its temperature and thermal-oxidative degradation as well as the mechanical properties of the resulting welds are unidentified yet. Furthermore, in industrial infrared welding processes often high changeover times and varying joining part temperatures are existent. Therefore, within the present work the connections between the mechanical joint properties of infrared welds and the thermal-oxidative degradation of plastics are elaborated for the first time and two approaches for the gentle infrared heating are investigated. The findings prove that the thermal-oxidative degradation of the plastic substantially decreases the mechanical weld properties and needs to be taken into account when setting up the industrial infrared welding process. The welding in argon atmosphere and the use of an active infrared emitter power control, which ensures the heating of the plastic below the degradation temperature, lead to better mechanical weld properties. In addition, the outcome of this work shows that the influence of the temperature of the joining part is negligible regarding the mechanical joint properties, whereas changeover times greater than or equal to 5 s lead to a dramatical decrease in the mechanical properties. Another challenge is the infrared welding of fibre reinforced plastics. The butt welding of fibre reinforced thermoplastics is common practice and prevents the use of fibres in the joint plane due to the fibre deflection in this area. As a result, the overlapping welding of organo sheets is investigated as well. In order to produce large and complex parts with high stiffness made of organo sheets, two process variants on the basis of the infrared welding technology are developed, which can be used at the industrial scale to manufacture hollow bodies. The overlapping welds of specimens and in hollow bodes made of organo sheets, enable the fibre utilisation across the joint plane.:1 Einleitung und Zielsetzung
2 Grundlagen und Stand der Technik
3 Experimentelles
4 Analyseverfahren
5 Ergebnisse zum Stumpfschweißen
6 Ergebnisse zum Überlappschweißen
7 Bewertung der Ergebnisse
8 Zusammenfassung und Ausblick
|
Page generated in 0.1233 seconds