Spelling suggestions: "subject:"exygen level"" "subject:"0xygen level""
11 |
Modeling non-stationary resting-state dynamics in large-scale brain modelsHansen, Enrique carlos 27 February 2015 (has links)
La complexité de la connaissance humaine est révèlée dans l'organisation spatiale et temporelle de la dynamique du cerveau. Nous pouvons connaître cette organisation grâce à l'analyse des signaux dépendant du niveau d'oxygène sanguin (BOLD), lesquels sont obtenus par l'imagerie par résonance magnétique fonctionnelle (IRMf). Nous observons des dépendances statistiques entre les régions du cerveau dans les données BOLD. Ce phénomène s' appelle connectivité fonctionnelle (CF). Des modèles computationnels sont développés pour reproduire la connectivité fonctionnelle (CF). Comme les études expérimentales précédantes, ces modèles assument que la CF est stationnaire, c'est-à-dire la moyenne et la covariance des séries temporelles BOLD utilisées par la CF sont constantes au fil du temps. Cependant, des nouvelles études expérimentales concernées par la dynamique de la CF à différentes échelles montrent que la CF change dans le temps. Cette caractéristique n'a pas été reproduite dans ces modèles computationnels précédants. Ici on a augmenté la non-linéarité de la dynamique locale dans un modèle computationnel à grande échelle. Ce modèle peut reproduire la grande variabilité de la CF observée dans les études expérimentales. / The complexity of human cognition is revealed in the spatio-temporal organization of brain dynamics. We can gain insight into this organization through the analysis of blood oxygenation-level dependent (BOLD) signals, which are obtained from functional magnetic resonance imaging (fMRI). In BOLD data we can observe statistical dependencies between brain regions. This phenomenon is known as functional connectivity (FC). Computational models are being developed to reproduce the FC of the brain. As in previous empirical studies, these models assume that FC is stationary, i.e. the mean and the covariance of the BOLD time series used for the FC are constant over time. Nevertheless, recent empirical studies focusing on the dynamics of FC at different time scales show that FC is variable in time. This feature is not reproduced in the simulated data generated by some previous computational models. Here we have enhanced the non-linearity of local dynamics in a large-scale computational model. By enhancing this non-linearity, our model is able to reproduce the variability of the FC found in empirical data.
|
12 |
Multimodal biomedical measurement methods to study brain functions simultaneously with functional magnetic resonance imagingMyllylä, T. (Teemu) 12 August 2014 (has links)
Abstract
Multimodal measurements are increasingly being employed in the study of human physiology. Brain studies in particular can draw advantage of simultaneous measurements using different modalities to analyse correlations, mechanisms and relationships of physiological signals and their dynamics in relation to brain functions. Moreover, multimodal measurements help to identify components of physiological dynamics generated specifically by the brain.
This thesis summarizes the study, design and development of non-invasive medical instruments that can be utilized in conjunction with magnetic resonance imaging (MRI). A key challenge in the development of measurement methods is posed by the extraordinary requirements that the MRI environment poses - all materials need to be MR-compatible and the selected instruments and devices must not be affected by the strong magnetic field generated by the MRI scanner nor the MRI by the instruments placed within its scanning volume.
The presented methods allow simultaneous continuous measurement of heart rate (HR) and metabolism from the brain cortex as well as pulse wave velocity (PWV) and blood pressure measurements in synchrony with electroencephalography (EEG) and MRI. Furthermore, the thesis explored the reliability and accuracy of the responses gathered by the developed instruments and, using new experimental methods, estimated the propagation of near-infrared light in the human brain.
The goal of the novel multimodal measurement environment is to provide more extensive tools for medical researchers, neurologists in particular, to acquire accurate information on the function of the brain and the human body. Measurements have been performed on more than 70 persons using the presented multimodal setup to study such factors as the correlation between blood oxygen level-dependent (BOLD) data and low-frequency oscillations (LFOs) during the resting state. / Tiivistelmä
Multimodaalisia kuvantamismenetelmiä käytetään enenevässä määrin ihmisen fysiologian ja elintoimintojen tutkimisessa. Erityisesti aivotutkimuksessa samanaikaisesti useammalla modaliteetilla mittaaminen mahdollistaa erilaisten fysiologisten mekanismien ja niiden korrelaatioiden tutkimisen kehon ja aivotoimintojen välillä. Lisäksi multimodaaliset mittaukset auttavat yksilöimään fysiologiset komponentit toisistaan ja identifioimaan aivojen tuottamia fysiologisia signaaleja.
Tämä väitöskirja kokoaa tutkimustyön sekä laite- ja instrumentointisuunnittelun ja sen kehittämistyön ei-invasiivisesti toteutettujen lääketieteen mittausmenetelmien käyttämiseksi magneettikuvauksen aikana. Erityishaasteena työssä on ollut magneettikuvausympäristö, joka asettaa erityisvaatimuksia mm. mittalaitteissa käytettäville materiaaleille sekä laitteiden häiriönsiedolle magneettikuvauslaitteen aiheuttaman voimakkaan magneettikentän takia. Kehitettävät mittausmenetelmät eivät myöskään saa aiheuttaa häiriöitä magneettikuvauslaitteen tuottamalle kuvainformaatiolle.
Väitöskirjassa esitettävät mittausmenetelmät tekevät mahdolliseksi mitata magneettikuvausympäristössä ihmisen sydämen sykettä, veren virtauksen kulkunopeutta ja verenpaineen vaihteluja sekä aivokuoren metaboliaa - kaikki synkronissa aivosähkökäyrän mittaamisen ja magneettikuvantamisen kanssa. Lisäksi väitöskirjassa tutkitaan kehitettyjen mittausmenetelmien antamaa mittaustarkkuutta sekä arvioidaan lähi-infrapunavalon etenemistä ihmisen aivoissa uudenlaisella menetelmällä.
Kehitetyllä multimodaalisella mittausympäristöllä on tavoitteena antaa lääketieteen alan tutkijoille, erityisesti neurologeille, käyttöön mittausmenetelmiä, joiden avulla voidaan tutkia ihmisen aivojen ja kehon välisiä toimintoja aiempaa kattavammin. Laitekokonaisuudella on tutkittu jo yli 70:tä henkilöä. Näissä mittauksissa on tutkittu mm. veren happitasojen hitaita vaihteluja ihmisen aivojen ollessa lepotilassa, ns. resting state -tilassa.
|
13 |
ADVANCED STRUCTURAL AND FUNCTIONAL MAGNETIC RESONANCE IMAGING IN CHRONIC LOW BACK PAJones, Gavin 10 1900 (has links)
<p>An objective measure of muscular low back pain (LBP) symptoms eludes clinicians. This study assessed efficacy of magnetic resonance imaging (MRI) of the lumbar multifidus using diffusion tensor imaging (DTI), blood oxygen level dependent (BOLD) signal fractal dimension (FD) analysis and muscle cross sectional area (CSA) in LBP assessment. MRI results were compared to two questionnaires, the Oswestry disability index (ODI) and visual analog score (VAS).</p> <p>Right-left asymmetry in both DTI metrics and T2-weighted (T2W) CSA were greater in the injured. Also, asymmetry measures were correlated with body mass index (BMI) but not age, height, or level of physical activity (measured via Godin activity questionnaire). The relationship between asymmetry and LBP symptoms in T2W and DTI scans increased for subjects with BMI below 35kg/m<sup>2</sup>.</p> <p>BOLD FD did not scale with LBP symptoms. However, FD analysis showed promise following therapeutic Swedish massage, hypothesized as being related to local perfusion changes, indicating that FD is sensitive to changes in the lumbar muscle, just not LBP symptoms. Thus the BOLD FD does change with treatment, just not with the symptoms of LBP.</p> <p>When combining data from multiple scan types, the symptoms of LBP correlated best with the unweighted mean of DTI fractional anisotropy (FA) and T2W CSA asymmetry, and the correlation was greatest (R<sup>2</sup>=0.88) when only <em>symptomatic (not both symptomatic and control)</em> subjects with BMIs from 18-25kg/m<sup>2</sup> were considered. From these results there appears to be clinical utility in characterizing the symptoms of non-acute LBP using DTI and CSA.</p> / Doctor of Philosophy (PhD)
|
14 |
Analýza souvislostí mezi simultánně měřenými EEG a fMRI daty / Analysis of connections between simultaneous EEG and fMRI dataLabounek, René January 2012 (has links)
Electroencephalography and functional magnetic resonance are two different methods for measuring of neural activity. EEG signals have excellent time resolution, fMRI scans capture records of brain activity in excellent spatial resolution. It is assumed that the joint analysis can take advantage of both methods simultaneously. Statistical Parametric Mapping (SPM8) is freely available software which serves to automatic analysis of fMRI data estimated with general linear model. It is not possible to estimate automatic EEG–fMRI analysis with it. Therefore software EEG Regressor Builder was created during master thesis. It preprocesses EEG signals into EEG regressors which are loaded with program SPM8 where joint EEG–fMRI analysis is estimated in general linear model. EEG regressors consist of vectors of temporal changes in absolute or relative power values of EEG signal in the specified frequency bands from selected electrodes due to periods of fMRI acquisition of individual images. The software is tested on the simultaneous EEG-fMRI data of a visual oddball experiment. EEG regressors are calculated for temporal changes in absolute and relative EEG power values in three frequency bands of interest ( 8-12Hz, 12-20Hz a 20-30Hz) from the occipital electrodes (O1, O2 and Oz). Three types of test analyzes is performed. Data from three individuals is examined in the first. Accuracy of results is evaluated due to the possibilities of setting of calculation method of regressor. Group analysis of data from twenty-two healthy patients is performed in the second. Group EEG regressors analysis is realized in the third through the correlation matrix due to the specified type of power and frequency band outside of the general linear model.
|
Page generated in 0.0577 seconds