Spelling suggestions: "subject:"beural mass"" "subject:"aneural mass""
1 |
Spatio-temporal modelling and analysis of epileptiform EEGGoodfellow, Marc January 2011 (has links)
In this thesis we investigate the mechanisms underlying the generation of abnormal EEG rhythms in epilepsy, which is a crucial step towards better treatment of this disorder in the future. To this end, macroscopic scale mathematical models of the interactions between neuronal populations are examined. In particular, the role of interactions between neural masses that are spatially distributed in cortical networks are explored. In addition, two other important aspects of the modelling process are addressed, namely the conversion of macroscopic model variables into EEG output and the comparison of multivariate, spatio-temporal data. For the latter, we adopt a vectorisation of the correlation matrix of windowed data and subsequent comparison of data by vector distance measures. Our modelling studies indicate that excitatory connectivity between neural masses facilitates self-organised dynamics. In particular, we report for the first time the production of complex rhythmic transients and the generation of intermittent periods of 'abnormal' rhythmic activity in two different models of epileptogenic tissue. These models therefore provide novel accounts of the spontaneous, intermittent transition between normal and pathological rhythms in primarily generalised epilepsies and the evocation of complex, self-terminating, spatio-temporal dynamics by brief stimulation in focal epilepsies. Two key properties of these models are excitability at the macroscopic level and the presence of spatial heterogeneities. The identification of neural mass excitability as an important processes in spatially extended brain networks is a step towards uncovering the multi-scale nature of the pathological mechanisms of epilepsy. A direct consequence of this work is therefore that novel experimental investigations are proposed, which in itself is a validation of our modelling approach. In addition, new considerations regarding the nature of dynamical systems as applied to problems of transitions between rhythmic states are proposed and will prompt future investigations of complex transients in spatio-temporal excitable systems.
|
2 |
Dynamics underlying epileptic seizures: insights from a neural mass modelFan, Xiaoya 17 December 2018 (has links) (PDF)
In this work, we propose an approach that allows to explore the potential pathophysiological mechanisms (at neuronal population level) of ictogenesis by combining clinical intracranial electroencephalographic (iEEG) recordings with a neural mass model. IEEG recordings from temporal lobe epilepsy (TLE) patients around seizure onset were investigated. Physiologically meaningful parameters (average synaptic gains of the excitatory, slow and fast inhibitory population, Ae, B and G) were identified during interictal to ictal transition. We analyzed the temporal evolution of four ratios, i.e. Ae/G, Ae/B, Ae/(B + G), and B/G. The excitation/inhibition ratio increased around seizure onset and decreased before seizure offset, suggesting the disturbance and restoration of balance between excitation and inhibition around seizure onset and before seizure offset, respectively. Moreover, the slow inhibition may have an earlier effect on the breakdown of excitation/inhibition balance. Results confirm the decrease in excitation/inhibition ratio upon seizure termination in human temporal lobe epilepsy, as revealed by optogenetic approaches both in vivo in animal models and in vitro. We further explored the distribution of the average synaptic gains in parameter space and their temporal evolution, i.e. the path through the model parameter space, in TLE patients. Results showed that the synaptic gain values located roughly on a plane before seizure onset, dispersed during ictal and returned when the seizure terminated. Cluster analysis was performed on seizure paths and demonstrated consistency in synaptic gain evolution across different seizures from individual patients. Furthermore, two patient groups were identified, each one corresponding to a specific synaptic gain evolution in the parameter space during a seizure. Results were validated by a bootstrapping approach based on comparison with random paths. The differences in the path revealed variations in EEG dynamics for patients despite showing an identical seizure onset pattern. Our approach may have the potential to classify the epileptic patients into subgroups based on different mechanisms revealed by subtle changes in synaptic gains and further enable more robust decisions regarding treatment strategy. The increase of excitation/inhibition ratios, i.e. Ae/G, Ae/B and Ae/(B+G), around seizure onset makes them potential cues for seizure detection. We explored the feasibility of a model based seizure detection algorithm. A simple thresholding method was employed. We evaluated the algorithm against the manual scoring of a human expert on iEEG samples from patients suffering from different types of epilepsy. Results suggest that Ae/(B+G), i.e. excitation/(slow + fast inhibition) ratio, allowed the best performance and that the algorithm best suited TLE patients. Leave-one-out cross-validation showed that the algorithm achieved 94.74% sensitivity for TLE patients. The median false positive rate was 0.16 per hour, and median detection delay was -1.0 s. Of interest, the values of the threshold determined by leave-one-out cross-validation for TLE patients were quite constant, suggesting a general excitation/inhibition balance baseline in background iEEG among TLE patients. Such a model-based seizure detection approach is of clinical interest and could also achieve good performance for other types of epilepsy provided that more appropriate model, i.e. better describe epileptic EEG waveforms for other types of epilepsy, is implemented. Altogether, this thesis contributes to the field of epilepsy research from two perspectives. Scientifically, it gives new insights into the mechanisms underlying interictal to ictal transition, and facilitates better understanding of epileptic seizures. Clinically, it provides a tool for reviewing EEG data in a more efficient and objective manner and offers an opportunity for on-demand therapeutic devices. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
3 |
Modeling non-stationary resting-state dynamics in large-scale brain modelsHansen, Enrique carlos 27 February 2015 (has links)
La complexité de la connaissance humaine est révèlée dans l'organisation spatiale et temporelle de la dynamique du cerveau. Nous pouvons connaître cette organisation grâce à l'analyse des signaux dépendant du niveau d'oxygène sanguin (BOLD), lesquels sont obtenus par l'imagerie par résonance magnétique fonctionnelle (IRMf). Nous observons des dépendances statistiques entre les régions du cerveau dans les données BOLD. Ce phénomène s' appelle connectivité fonctionnelle (CF). Des modèles computationnels sont développés pour reproduire la connectivité fonctionnelle (CF). Comme les études expérimentales précédantes, ces modèles assument que la CF est stationnaire, c'est-à-dire la moyenne et la covariance des séries temporelles BOLD utilisées par la CF sont constantes au fil du temps. Cependant, des nouvelles études expérimentales concernées par la dynamique de la CF à différentes échelles montrent que la CF change dans le temps. Cette caractéristique n'a pas été reproduite dans ces modèles computationnels précédants. Ici on a augmenté la non-linéarité de la dynamique locale dans un modèle computationnel à grande échelle. Ce modèle peut reproduire la grande variabilité de la CF observée dans les études expérimentales. / The complexity of human cognition is revealed in the spatio-temporal organization of brain dynamics. We can gain insight into this organization through the analysis of blood oxygenation-level dependent (BOLD) signals, which are obtained from functional magnetic resonance imaging (fMRI). In BOLD data we can observe statistical dependencies between brain regions. This phenomenon is known as functional connectivity (FC). Computational models are being developed to reproduce the FC of the brain. As in previous empirical studies, these models assume that FC is stationary, i.e. the mean and the covariance of the BOLD time series used for the FC are constant over time. Nevertheless, recent empirical studies focusing on the dynamics of FC at different time scales show that FC is variable in time. This feature is not reproduced in the simulated data generated by some previous computational models. Here we have enhanced the non-linearity of local dynamics in a large-scale computational model. By enhancing this non-linearity, our model is able to reproduce the variability of the FC found in empirical data.
|
4 |
Modèles biomathématiques des effets de la stimulation électrique directe et indirecte sur la dynamique neuronale : application à l'épilepsie / Modeling the effects of direct and indirect electrical stimulation on neuronal dynamics : application to epilepsyMina, Faten 03 December 2013 (has links)
Les effets de la stimulation électrique sur la dynamique des systèmes neuronaux épileptiques sont encore méconnus. L'objectif principal de cette thèse est de progresser dans la compréhension des effets attendus en fonction des paramètres de stimulation. Dans la première partie du manuscrit, un modèle mésoscopique (population neuronale) de la boucle thalamocorticale est proposé pour étudier en détails les effets de stimulation indirecte (thalamique), avec une attention particulière sur la fréquence. Des signaux EEG intracérébraux acquis chez un patient souffrant d'épilepsie pharmaco-résistante ont d'abord été analysés selon une approche temps-fréquence (algorithme de type Matching Pursuit). Les caractéristiques extraites ont ensuite été utilisées pour identifier les paramètres du modèle proposé en utilisant une approche exhaustive (minimisation de la distance entre signaux simulés et réels). Enfin, le comportement dynamique du modèle a été étudié en fonction de la fréquence du signal de stimulation. Les résultats montrent que le modèle reproduit fidèlement les signaux observés ainsi que la relation non linéaire entre la fréquence de stimulation et ses effets sur l'activité épileptique. Ainsi, dans le modèle, la stimulation à basse fréquence (SBF ; fs <20 Hz) , et la stimulation à haute fréquence (SHF ; fs > 60 Hz) permettent d'abolir les dynamiques épileptiques, alors que la stimulation à fréquence intermédiaire (SFI; 20 < fs < 60 Hz) n'ont pas d'effet , comme observé cliniquement. De plus, le modèle a permis d'identifier des mécanismes cellulaires et de réseau impliqués dans les effets modulateurs de la stimulation. La deuxième partie du manuscrit porte sur les effets polarisants de la stimulation directe en courant continu (CC) de la zone épileptogène dans le contexte de l'épilepsie mésiale du lobe temporal (EMLT). Un modèle biomathématique bien connu de la région hippocampique CA1 a été adapté pour cette étude. Deux modifications sont été intégrées au modèle, 1) une représentation physiologique de l'occurrence des décharges paroxystiques hippocampiques (DPH) basée sur une identification de leurs statistiques d'occurrence basée sur des données expérimentales (modèle in vivo d'EMLT)et 2) une représentation électrophysiologiquement plausible de la stimulation prenant en compte l'interface électrode-électrolyte. L'analyse de la sortie du modèle en fonction de la polarité de stimulation, a montré qu'une réduction (resp. augmentation) significative des DPH (en durée et en fréquence) sous stimulation anodale (resp. cathodole). Un protocole expérimental a ensuite été proposé et utilisé afin de valider les prédictions du modèle. / The effects of electrical stimulation on the dynamics of epileptic neural systems are still unknown. The main objective of this thesis is to progress the understanding of the expected effects as a function of stimulation parameters. In the first part of the manuscript, a mesoscopic model (neural population) of the thalamocortical loop is proposed to study in details the effects of indirect stimulation (thalamic), with a particular attention to stimulation frequency. Intracerebral EEG signals acquired from a patient with drug-resistant epilepsy were first analyzed using a time-frequency approach (Matching Pursuit algorithm). The extracted features were then used to optimize the parameters of the proposed model using a Brute-Force approach (minimizing the distance between simulated and real signals). Finally, the dynamical behavior of the model was studied as a function of the frequency of the stimulation input. The results showed that the model reproduces the real signals as well as the nonlinear relationship between the frequency of stimulation and its effects on epileptic dynamics. Thus, in the model, low-frequency stimulation (LFS; fs <20 Hz) and high-frequency stimulation (HFS; fs > 60 Hz) suppress epileptic dynamics, whereas intermediate-frequency stimulation (IFS; 20 < fs <60 Hz) has no effect, as observed clinically. In addition, the model was used to identify the cellular and network mechanisms involved in the modulatory effects of stimulation. The second part of the manuscript addresses the polarizing effects of direct current (DC) stimulation of the epileptogenic zone in the context of the mesial temporal lobe epilepsy (MTLE). A well-known computational model of the hippocampal CA1 region was adapted for this study. Two modifications were added to the model: 1) a physiological representation of the occurrence of hippocampal paroxysmal discharges (HPD) based on the statistical identification of their occurrence in experimental data (in vivo model of MTLE) and 2) an electrophysiologically plausible representation of the stimulation inputs taking into account the electrode-electrolyte interface. The analysis of the model output as a function of the polarity of stimulation, showed a significant reduction (resp. increase) of HPDs (duration and frequency) in anodal stimulation (resp. cathodol). An experimental protocol was then proposed and used to validate the model predictions.
|
Page generated in 0.051 seconds