1 |
Contribution respective des récepteurs P2Y13 et SR-BI dans le métabolisme du HDL-C et le développement de l'athérosclérose / Respective contribution of P2Y13 and SR-BI receptors in HDL-C metabolism and atherosclerosis developmentEspinosa Delgado, Sara 12 January 2017 (has links)
L’effet athéroprotecteur des Lipoprotéines de Haute Densité (HDL) est principalement attribué à leur rôle clé dans Transport Retour du Cholestérol (RCT), un processus par lequel le cholestérol excédentaire des cellules périphériques est capté par les particules HDL pour être amené au foie où il sera préférentiellement sécrété dans les voies biliaires, puis excrété dans les fèces. Deux voies indépendantes ont été identifiées comme étant impliquées dans l’endocytose hépatique du HDL. La première est la voie ecto-F1-ATPase/P2Y13 dans laquelle l’apoA-I (apolipoprotéine majoritaire des HDL) se lie à la F1-ATPase exprimé à la surface des hépatocytes (ecto-F1-ATPase) et stimule l’hydrolyse d’ATP en ADP. L’ADP ainsi généré active le récepteur purinergique P2Y13 pour stimuler l’endocytose de l’holoparticule HDL (protéines + lipides) via un troisième récepteur différent de SR-BI. Les souris invalidées pour P2Y13 présentent une diminution des sécrétions de lipides biliaires accompagnée d’une diminution du RCT des macrophages vers les fèces sous régime normolipidique. Un régime riche en cholestérol (1.25% cholestérol) accentue ce phénotype. La voie SR-BI, quant à elle, est responsable de la captation sélective du cholestérol estérifié des HDL par le foie. Les souris invalidées pour SR-BI spécifiquement au niveau du foie (SR-BI KOfoie) présentent une hypercholestérolémie principalement attribuée à une augmentation du HDL-C et développent des plaques d’athérosclérose sous régime hypercholestérolémique. Dans une étude récente, nous avons montré que l’invalidation de P2Y13 dans le modèle murin proathérogène apoE KO induit une augmentation du développement d’athérosclérose associée à une diminution des sécrétions de lipides biliaires et du RCT des macrophages vers les fèces. De plus, dans ces souris, l’expression hépatique transcriptionnelle et protéique de SR-BI étaient fortement augmentées par rapport aux souris apoE KO, suggérant qu’un possible mécanisme de compensation pourrait exister entre les récepteurs P2Y13 et SR-BI. L’objectif de ma thèse a été d’étudier la contribution respective des récepteur P2Y13 et SR-BI dans le métabolisme du HDL-C et le développement de l’athérosclérose. Nous avons croisé des souris P2Y13 KO avec des souris SR-BI KOfoie et nous avons obtenu des souris doublement invalidées (P2Y13 x SR-BIfoie dKO). Le phénotype métabolique des souris dKO a été étudié sous régime normolipidique et hypercholestérolémique et le développement d’athérosclérose sous régime hypercholestérolémique. Par rapport aux souris sauvages, les souris dKO sous régime normolipidique, présentent une augmentation du cholestérol plasmatique similaire à celle observée chez les souris SR-BI KOfoie, principalement imputable à une augmentation du HDL-C. Les souris dKO, mais pas les souris SR-BI KO, montrent une diminution des sécrétions de lipides biliaires comparable à celle observée chez les souris P2Y13 KO. Ce phénotype métabolique observé chez les souris dKO est accentué sous régime hypercholestérolémique et est associé à une augmentation des plaques d’athérosclérose par rapport aux souris SR-BI KOfoie. L’ensemble des résultats montrent que la délétion hépatique de SR-BI contribue essentiellement à une augmentation des taux plasmatiques de cholestérol, et plus particulièrement HDL-C. La délétion de P2Y13, quant à elle, n’induit aucune variation des lipides plasmatiques mais contribue principalement à une diminution des sécrétions de lipides biliaires qui contribue au développement de l’athérosclérose chez les souris invalidées pour SR-BI hépatique. Ces résultats soutiennent le concept selon lequel le flux de cholestérol transporté par les HDL des tissus périphériques vers le foie et les voies de sécrétions biliaires est plus important dans l’athéro-protection que la concentration plasmatique en HDL-C. L’activation du récepteur P2Y13 constitue une approche thérapeutique intéressante pour cibler les HDL contre le développement de l’athérosclérose. / The atheroprotective effect of High Density Lipoproteins (HDL) is mostly attributed to their central role in Reverse Cholesterol Transport (RCT), a process whereby excess cholesterol is taken up from peripheral cells to be processed into HDL particles, then later delivered to the liver where it is preferentially secreted into the bile, either as free cholesterol or after transformation into bile acids, to be further excreted into the feces. Two independent pathways have been identified as being involved in the hepatic HDL uptake. The first one involves the ecto-F1-ATPase/P2Y13 pathway. Briefly, apoA-I (main HDL apolipoprotein) binds to the F1-ATPase expressed ectopically at the surface of the hepatocyte (ecto-F1-ATPase) and stimulates hydrolysis of extracellular ATP into ADP. The generated ADP selectively activates the purinergic receptor P2Y13 resulting in subsequent endocytosis of the HDL-holoparticle (i.e. protein and lipid moieties) through a low-affinity binding site distinct from SR-BI. Mice deficient for P2Y13 display decreased biliary lipids secretion associated to an impaired macrophage-to-feces RCT when fed a Chow Diet (CD), phenotype emphasized when fed a High Cholesterol Diet (HCD). Differently, the SR-BI pathway mediates selective HDL-cholesteryl ester uptake by the liver. Mice with liver-specific SR-BI deficiency (SR-BI-KOliver) display a hypercholesterolemia mainly due to an increase on HDL-C and develop atherosclerosis when fed a HCD. In a recent study, we showed that P2Y13 extinction in the pro-atherogenic mouse model apoE-KO resulted in an increase of atherosclerotic plaque development associated to a decreased biliary lipid secretion and macrophage-to-feces RCT. Moreover, in these mice, mRNA and protein level of hepatic SR-BI were consistently increased as compared to apoE KO mice, suggesting that a possible compensatory mechanism might exist between P2Y13 and SR-BI receptors. My thesis aimed to study the respective contribution of P2Y13 and hepatic SR-BI in HDL-C metabolism and atherosclerosis development. We crossbred P2Y13 KO with SR-BI KOliver mice and obtained double knockout mice (P2Y13 x SR-BIliver dKO). The phenotype of dKO mice was analysed with regards to HDL-C metabolism either on CD or after 20 weeks of HCD, and to atherosclerosis development on HCD. When fed a CD, dKO mice, showed an increase in plasma cholesterol compared to WT mice similar to that observed in SR-BI KOliver mice, mainly due to an increase in HDL-C. DKO, but not SR-BI KOliver mice, showed impaired biliary lipid secretion to the same extent than P2Y13 KO mice. HCD accentuated the metabolic phenotype of dKO mice, with an increase in atherosclerotic lipid lesions in dKO mice compared to SR-BI KOliver mice. The phenotypic features of P2Y13 x SR-BIliver dKO mice show that hepatic extinction of SR-BI essentially contributes to an increase of HDL-C levels. Conversely, P2Y13 extinction does not induce any change in plasma lipoprotein levels but mainly contributes to a decrease of hepato-biliary cholesterol secretions, which translates into an increased atherosclerosis development, on top of SR-BI hepatic extinction. These results support the concept that the dynamic flux of cholesterol transported by HDL from macrophage foam cells to the liver for further bile secretion is essential for athero-protection rather than steady-state HDL-C concentration. In the future of HDL-therapies, P2Y13 receptor activation constitutes an interesting therapeutic approach against atherosclerosis development.
|
2 |
Génération et analyse phénotypique des souris invalidées pour le récepteur nucléotique P2Y13. Generation and phenotypical analysis of P2Y13 receptor null miceBen Addi, Abduelhakem A 06 December 2007 (has links)
Les nucléotides et nucléosides sont des molécules essentielles à la vie. Outre leurs fonctions intracellulaires, ils jouent un rôle dans la communication intercellulaire. Les nucléotides et nucléosides sont libérés dans l’espace extracellulaire par différents mécanismes et ensuite rapidement métabolisés par des ecto-nucléotidases. Ils exercent leurs effets paracrines et/ou autocrines en activant des récepteurs présents à la surface membranaire des cellules. Les récepteurs P1, au nombre de quatre (A1, A2A, A2B et A3), sont activés par l’adénosine. Les récepteurs P2X1-7 ont une activité intrinsèque de canal ionique et sont essentiellement activés par l’ATP. Les récepteurs P2Y possèdent sept domaines transmembranaires et sont couplés à des protéines G. A ce jour huit sous-types ont été identifiés : P2Y1,2,4,6,11,12,13,14. Ces récepteurs sont activés par des nucléotides adényliques (ATP et ADP) et/ou uridyliques (UTP, UDP et UDP-glucose). Les récepteurs P1 et P2 modulent l’activité de multiples processus biologiques : système immunitaire (A2A, P2X7, P2Y11,…), agrégation plaquettaire (P2Y1, P2Y12, P2X1), tonus vasculaire, angiogenèse,…
Notre laboratoire a identifié et caractérisé plusieurs récepteurs P2Y : P2Y4, P2Y6, P2Y11 et P2Y13. Ce dernier est activé par l’ADP et est couplé à une protéine Gi. L’abondance du transcrit P2Y13 murin est caractérisée par l’ordre suivant : rate >> pancréas > foie = cerveau. Afin de déterminer son rôle physiologique, nous avons généré une lignée de souris invalidées pour le récepteur P2Y13. Après avoir validé l’inactivation du gène P2Y13 dans ces souris, nous avons analysé leur phénotype. Les souris P2Y13-/- ne présentent pas d’anomalie évidente : elles sont viables, fertiles et se développent normalement. Etant donné le profil d’expression de ce récepteur, nous avons analysé leur système immunitaire, en particulier les cellules dendritiques (DC).
In vivo, l’invalidation du récepteur P2Y13 ne semble pas avoir d’impact sur les réponses inflammatoires (choc septique, infiltration de neutrophiles, test à la formaline) et auto-immunes (uvéorétinite expérimentale). In vitro, nous avons montré que l’ADPβS induit une mobilisation de calcium cytoplasmique dans les DC spléniques et qu’il stimule l’endocytose d’antigènes par celles-ci. L’utilisation de DC transgéniques a permis d’exclure l’implication du récepteur P2Y13 et a montré que ces effets sont médiés par le récepteur P2Y12 qui est également activé par l’ADPβS. Ces observations suggèrent qu’il serait intéressant d’analyser le système immunitaire des souris P2Y12-/-, en particulier les réponses immunes dépendantes des DC. D’autre part, ce travail a débouché sur la mise en évidence d’un effet anti-inflammatoire médié par le récepteur de l’adénosine A2B dans les DC dérivées de la moelle osseuse. Enfin, nous avons récemment mis en évidence un rôle potentiel du récepteur P2Y13 dans le métabolisme des glucides et des lipides. Nous avons observé que les souris P2Y13-/- produisent plus d’insuline en réponse à une injection de glucose que les souris contrôles tandis que leur glycémie ne semble pas altérée. De plus, les souris P2Y13-/- sous régime riche en graisses reproduisent 3 caractéristiques du syndrome métabolique chez l'homme : surpoids, dyslipidémie (augmentation des triglycérides et du non HDL-cholestérol) et hyperinsulinémie.
Notre travail de thèse débouche donc sur deux conclusions et une perspective :
• l’adénosine exerce une action anti-inflammatoire sur les cellules dendritiques dérivées de moelle osseuse via l’activation du récepteur A2B ;
• le récepteur P2Y12 est exprimé fonctionnellement dans les cellules dendritiques murines et stimule l’endocytose ;
• le récepteur P2Y13 pourrait jouer un rôle important dans le contrôle du métabolisme des lipides et des glucides ainsi que du poids corporel, suggérant que des agonistes spécifiques de ce récepteur pourraient permettre de contrecarrer l’obésité et ses conséquences métaboliques néfastes.
|
3 |
Purinergic Signaling and Autophagy Regulate the Secretion of High-Density Lipoprotein and Hepatic LipaseChatterjee, Cynthia 19 April 2013 (has links)
Dyslipidemia can be a comorbidity of both insulin-resistance and atherosclerosis. Hypertriglyceridemia is common in hyperglycemia and is associated with hypoalphalipoproteinemia (low HDL) and with altered nucleotide or purinergic signaling. We therefore hypothesized that extracellular nucleotides may affect hepatic lipoprotein metabolism. Our studies confirm this view and show that nucleotides regulate cellular proteolytic pathways in liver cells and thereby control lipoprotein secretion and their metabolism by hepatic lipase (HL).
Treatment of liver cells with the nucleotide, adenosine diphosphate (ADP), stimulates VLDL-apoB100 and apoE secretion, but blocks HDL-apoA-I and HL secretion. ADP functions like a proteasomal inhibitor to block proteasomal degradation and stimulate apoB100 secretion. Blocking the proteosome is known to activate autophagic pathways. The nucleotide consequently stimulates autophagic degradation in liver cells and increases cellular levels of the autophagic proteins, LC3 and p62. Confocal studies show that ADP increases cellular LC3 levels and promotes co-localization of LC3 and apoA-I in an autophagosomal degradation compartment. ADP acts through the G-protein coupled receptor, P2Y13, to stimulate autophagy and block both HDL and HL secretion. Overexpression of P2Y13 increases cellular LC3 levels and blocks the induction of both HDL and HL secretion, while P2Y13 siRNA reduce LC3 protein levels and cause up to a ten-fold stimulation in HDL and HL secretion. P2Y13 gene expression regulates autophagy through the insulin receptor (IR-β). A reduction in P2Y13 expression increases the phosphorylation of IR-β and protein kinase B (Akt) >3-fold, while increasing P2Y13 expression inhibits the activation of IR-β and Akt. Experiments with epitope-labeled apoA-I and HL show that activation of purinergic pathways has no effect on the internalization and degradation of extracellular apoA-I and HL, which confirms the view that nucleotides primarily impact intracellular protein transport and degradation. In conclusion, elevated blood glucose levels may promote dyslipidemia by stimulating purinergic signaling through P2Y13 and IR-β and perturbing the intracellular degradation and secretion of both HDL and VLDL.
|
4 |
Purinergic Signaling and Autophagy Regulate the Secretion of High-Density Lipoprotein and Hepatic LipaseChatterjee, Cynthia January 2013 (has links)
Dyslipidemia can be a comorbidity of both insulin-resistance and atherosclerosis. Hypertriglyceridemia is common in hyperglycemia and is associated with hypoalphalipoproteinemia (low HDL) and with altered nucleotide or purinergic signaling. We therefore hypothesized that extracellular nucleotides may affect hepatic lipoprotein metabolism. Our studies confirm this view and show that nucleotides regulate cellular proteolytic pathways in liver cells and thereby control lipoprotein secretion and their metabolism by hepatic lipase (HL).
Treatment of liver cells with the nucleotide, adenosine diphosphate (ADP), stimulates VLDL-apoB100 and apoE secretion, but blocks HDL-apoA-I and HL secretion. ADP functions like a proteasomal inhibitor to block proteasomal degradation and stimulate apoB100 secretion. Blocking the proteosome is known to activate autophagic pathways. The nucleotide consequently stimulates autophagic degradation in liver cells and increases cellular levels of the autophagic proteins, LC3 and p62. Confocal studies show that ADP increases cellular LC3 levels and promotes co-localization of LC3 and apoA-I in an autophagosomal degradation compartment. ADP acts through the G-protein coupled receptor, P2Y13, to stimulate autophagy and block both HDL and HL secretion. Overexpression of P2Y13 increases cellular LC3 levels and blocks the induction of both HDL and HL secretion, while P2Y13 siRNA reduce LC3 protein levels and cause up to a ten-fold stimulation in HDL and HL secretion. P2Y13 gene expression regulates autophagy through the insulin receptor (IR-β). A reduction in P2Y13 expression increases the phosphorylation of IR-β and protein kinase B (Akt) >3-fold, while increasing P2Y13 expression inhibits the activation of IR-β and Akt. Experiments with epitope-labeled apoA-I and HL show that activation of purinergic pathways has no effect on the internalization and degradation of extracellular apoA-I and HL, which confirms the view that nucleotides primarily impact intracellular protein transport and degradation. In conclusion, elevated blood glucose levels may promote dyslipidemia by stimulating purinergic signaling through P2Y13 and IR-β and perturbing the intracellular degradation and secretion of both HDL and VLDL.
|
5 |
Génération et analyse phénotypique des souris invalidées pour le récepteur nucléotique P2Y13 / Generation and phenotypical analysis of P2Y13 receptor null miceBen Addi, Abduelhakem 06 December 2007 (has links)
Les nucléotides et nucléosides sont des molécules essentielles à la vie. Outre leurs fonctions intracellulaires, ils jouent un rôle dans la communication intercellulaire. Les nucléotides et nucléosides sont libérés dans l’espace extracellulaire par différents mécanismes et ensuite rapidement métabolisés par des ecto-nucléotidases. Ils exercent leurs effets paracrines et/ou autocrines en activant des récepteurs présents à la surface membranaire des cellules. Les récepteurs P1, au nombre de quatre (A1, A2A, A2B et A3), sont activés par l’adénosine. Les récepteurs P2X1-7 ont une activité intrinsèque de canal ionique et sont essentiellement activés par l’ATP. Les récepteurs P2Y possèdent sept domaines transmembranaires et sont couplés à des protéines G. A ce jour huit sous-types ont été identifiés :P2Y1,2,4,6,11,12,13,14. Ces récepteurs sont activés par des nucléotides adényliques (ATP et ADP) et/ou uridyliques (UTP, UDP et UDP-glucose). Les récepteurs P1 et P2 modulent l’activité de multiples processus biologiques :système immunitaire (A2A, P2X7, P2Y11,…), agrégation plaquettaire (P2Y1, P2Y12, P2X1), tonus vasculaire, angiogenèse,…<p><p>Notre laboratoire a identifié et caractérisé plusieurs récepteurs P2Y :P2Y4, P2Y6, P2Y11 et P2Y13. Ce dernier est activé par l’ADP et est couplé à une protéine Gi. L’abondance du transcrit P2Y13 murin est caractérisée par l’ordre suivant :rate >> pancréas > foie = cerveau. Afin de déterminer son rôle physiologique, nous avons généré une lignée de souris invalidées pour le récepteur P2Y13. Après avoir validé l’inactivation du gène P2Y13 dans ces souris, nous avons analysé leur phénotype. Les souris P2Y13-/- ne présentent pas d’anomalie évidente :elles sont viables, fertiles et se développent normalement. Etant donné le profil d’expression de ce récepteur, nous avons analysé leur système immunitaire, en particulier les cellules dendritiques (DC). <p>In vivo, l’invalidation du récepteur P2Y13 ne semble pas avoir d’impact sur les réponses inflammatoires (choc septique, infiltration de neutrophiles, test à la formaline) et auto-immunes (uvéorétinite expérimentale). In vitro, nous avons montré que l’ADPβS induit une mobilisation de calcium cytoplasmique dans les DC spléniques et qu’il stimule l’endocytose d’antigènes par celles-ci. L’utilisation de DC transgéniques a permis d’exclure l’implication du récepteur P2Y13 et a montré que ces effets sont médiés par le récepteur P2Y12 qui est également activé par l’ADPβS. Ces observations suggèrent qu’il serait intéressant d’analyser le système immunitaire des souris P2Y12-/-, en particulier les réponses immunes dépendantes des DC. D’autre part, ce travail a débouché sur la mise en évidence d’un effet anti-inflammatoire médié par le récepteur de l’adénosine A2B dans les DC dérivées de la moelle osseuse. Enfin, nous avons récemment mis en évidence un rôle potentiel du récepteur P2Y13 dans le métabolisme des glucides et des lipides. Nous avons observé que les souris P2Y13-/- produisent plus d’insuline en réponse à une injection de glucose que les souris contrôles tandis que leur glycémie ne semble pas altérée. De plus, les souris P2Y13-/- sous régime riche en graisses reproduisent 3 caractéristiques du syndrome métabolique chez l'homme :surpoids, dyslipidémie (augmentation des triglycérides et du non HDL-cholestérol) et hyperinsulinémie.<p><p>Notre travail de thèse débouche donc sur deux conclusions et une perspective :<p>•\ / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0148 seconds