Spelling suggestions: "subject:"2x4"" "subject:"p2x4""
1 |
Role of Purinergic Receptor (P2X4) in EtOH-Mediated Microglial Immune ResponsesGofman, Larisa January 2015 (has links)
Ethanol (EtOH) abuse is the third leading cause of preventable death in the United States. Mounting evidence indicates that EtOH-induced neuropathology may result from multicellular responses in which microglia cells play a prominent role. Purinergic receptor signaling plays a key role in regulating microglial function and, more importantly, mediates EtOH-induced effects. In our current study we sought to determine the effects of EtOH on microglial cell function, specifically the role of purinergic receptor X4 (P2X4) in EtOH-mediated microglial responses. Our results show a significant up-regulation of P2X4 gene expression as analyzed by real-time qPCR and protein expression as analyzed by flow cytometry in embryonic stem cell-derived microglial cells (ESdM) after 48 hours of EtOH treatment, as compared to untreated controls. Calcium mobilization in EtOH treated ESdM cells was found to be P2X4R- dependent using 5-BDBD, a selective P2X4R antagonist. Blocking P2X4R signaling with 5-BDBD decreased the level of calcium mobilization compared to EtOH treatment alone. EtOH decreased migration of microglia towards fractalkine (CX3CL1) by 75% following 48 hours of treatment compared to control. CX3CL1-dependent migration was confirmed to be P2X4 receptor-dependent using the antagonist 5-BDBD, which reversed the effects as compared to EtOH alone. Similarly, 48 hours of EtOH treatment significantly decreased phagocytosis of microglia by 15% compared to control. 5-BDBD pre-treatment prior to EtOH treatment significantly increased microglial phagocytosis. These findings demonstrate that P2X4 receptor may play a role in modulating important regulatory functions in microglia in the context of EtOH abuse. P2X4R plays an important regulatory function in microglia. P2X4 is involved in a myriad of molecular signaling such as proliferation, activation of transcription factors, specifically through the MAPK pathway, and ATP signaling. Here, we also investigated the intracellular signal transduction pathway that influences P2X4R expression in microglia in response to EtOH. We found EtOH (100 mM) decreased phosphorylated AKT and extracellular signal-regulated kinase (ERK) cascades in ESdM cells. EtOH effect on ERK phosphorylation was completely inhibited by U0126, an inhibitor of MEK 1 and 2. However, PD98095, a potent inhibitor of MEK1 but a weak inhibitor of MEK2 had modest effect on phosphorylated ERK1/2 suggesting a possible role of MEK2-dependent ERK signaling in modulating EtOH induced effects on microglia. Utilization of 5-BDBD, a selective P2X4R antagonist reversed the EtOH-induced effect on phosphorylated AKT and ERK. Next we wanted to examine the effects of EtOH on transcription factor activity to determine the signaling mediators, which may play a role in EtOH-induced increase in P2X4R in microglia. EtOH increased transcriptional activity of NFκB, NFAT, and CREB,, however 5-BDBD blocked the effect on CREB transcriptional activity alone, suggesting a specific role of CREB in EtOH-induced expression of P2X4R in microglia. In summary, EtOH affects the expression of P2X4R in microglial cells and contributes to aberrant microglial effector function including phagocytosis and migration as well as alterations in calcium mobilization. Furthermore, pharmacological blockade with a selective P2X4R antagonist reversed the action, suggesting that P2X4R may play a role in mediating EtOH-induced effects on microglia. EtOH decreased expression of ERK and AKT, which was blocked with the P2X4R antagonist, suggesting EtOH effect may contribute to irregular microglial signaling. Investigations regarding transcription factor NFκB, NFAT and CREB activity in response to EtOH, all showed an increase after EtOH treatment, however P2X4R antagonist only had an effect on CREB, blocking the effect of EtOH on its activity. Determining the mechanism underlying EtOH-induced increase in P2X4R expression still remains unclear. This research was conducted to investigate the importance of P2X4R signaling in EtOH-mediate microglial function. Although many more questions remain unanswered, these experiments have provided evidence to target purinergic receptor X4 as a potential mediator of EtOH-induced effects in microglia. / Pathology
|
2 |
Rôle des récepteurs P2X4 dans la dégradation d’ApoE : implication dans la maladie d’Alzheimer / Involvement of P2X4 receptors in ApoE degradation : implication in Alzheimer diseaseHua, Jennifer 06 November 2019 (has links)
Les récepteurs purinergiques P2X4 (P2X4R) sont des récepteurs canaux exprimés par lesneurones et les microglies du système nerveux central et sont impliqués dans de nombreuxprocessus physiologiques et pathologiques. Des études préliminaires, menées au sein dulaboratoire, ont permis de mettre en évidence une interaction entre P2X4R etl’Apolipoprotéine E (ApoE), ainsi qu’une augmentation d’ApoE dans les macrophages et lesmicroglies provenant de souris déficientes pour P2X4R. Basée sur ces observations, lapremière partie de cette thèse a cherché à caractériser les mécanismes impliquant P2X4R danscet effet. ApoE étant un facteur de risque majeur dans la maladie d’Alzheimer, la deuxièmepartie de cette thèse a été consacrée à étudier l’implication de P2X4R dans cette pathologie.Les résultats présentés montrent que P2X4R module l’activité de la cathepsine B, enzymeresponsable de la dégradation lysosomale d’ApoE. L’utilisation de souris APP/PS1 a permisde montrer que l’absence de P2X4R conduit à une amélioration des capacités mnésiques, unediminution de la concentration de peptide Aβ soluble ainsi qu’à une augmentation d’ApoEmicrogliale.Ces résultats indiquent que P2X4R régule la dégradation d’ApoE par un mécanismedépendant de la cathepsine B, et que son invalidation permet d’améliorer les symptômescognitifs de la maladie d’Alzheimer. / P2X4 receptors (P2X4R) are purinergic ion channels expressed on neurons and microglia inthe central nervous system. They have been widely studied and have been implicated in manyphysiological and pathological processes. Previous studies conducted in the laboratoryrevealed an interaction between P2X4R and the Apolipoprotein E (ApoE), as well as anincrease in ApoE level in primary macrophages and microglia obtained from mice lackingP2X4R. Based on these results, this thesis aimed to decipher the mechanisms underlyingP2X4R regulation of ApoE levels. In addition, ApoE being a major risk factor forAlzheimer’s disease, part of this work investigated potential implications of P2X4R in thispathology.Results show that P2X4R modulates cathepsin B activity, which in turn promotes ApoElysosomal degradation. APP/PS1 mice lacking P2X4R show an increase in cognitiveperformances, a decrease in soluble Aβ peptide and an increase of microglia ApoE level.These results support that P2X4R modulates ApoE degradation in a cathepsin B-dependantmanner and that its invalidation leads to an improvement in Alzheimer’s pathology.
|
3 |
The physiological role of P2X4 receptors in lysosome functionTan, Sin Lih January 2017 (has links)
P2X4 receptors (P2X4R) are ligand-gated ion channels activated by ATP and with a high permeability to Ca2+. They are predominantly localised to lysosomes and from there can traffic to the cell surface. ATP levels within the lysosome are high but P2X4Rs are inhibited by the acidic pH. Previously, it was shown that the alkalinisation of lysosomes using pharmacological reagents was sufficient to activate P2X4Rs, which promoted homotypic lysosome fusion. The main aim of this study was to identify physiological regulators of lysosomal P2X4Rs and to examine their role in lysosome Ca2+ signalling and fusion. The first candidate I investigated was P2X7R, which is typically co-expressed with P2X4R in immune and epithelial cells, and which has already been shown to induce changes in lysosome properties upon activation. I co-expressed these two receptors in normal rat kidney (NRK) cells and in HeLa cells and looked for a synergistic interaction between them in promoting lysosome fusion, as assessed by measuring the size of lysosomes. My results showed a significant increase in lysosome size following activation of P2X7R but only in the presence of P2X4R. Neither receptor alone was sufficient to promote lysosome fusion in response to the agonist BzATP. LAMP-GECO was used to measure changes in cytosolic [Ca2+] within the vicinity of the lysosome. Fusion of the Ca2+ reporter (GECO) to the C-terminus of LAMP-1 targets GECO to the cytosolic surface of the lysosome. Co-expression of P2X4R with P2X7R augmented the P2X7R-induced Ca2+ signal suggesting that P2X4Rs mediate lysosomal Ca2+ efflux downstream of P2X7R stimulation. Next, I showed that the expression of P2X4R was sufficient to enhance the cytosolic Ca2+ response to the activation of endogenous histamine H1 receptors and to promote lysosome fusion. Similar results were obtained with P2Y2R stimulation, which also couples to the phospholipase C pathway. Further experiments were conducted to look at differences in the trafficking behaviour of human and rat P2X4Rs and to examine a role for P2X4Rs in autophagic flux. My results suggest a synergistic interaction between P2X4R and P2X7R which inhibits autophagic flux, similar to the effect of bafilomycin treatment. Therefore, the effect of P2X4/7R in autophagy may be mediated by the alkalinisation of lysosomes. Altogether the results of my project improve our understanding of how the P2X4R Ca2+ channel regulates lysosome function.
|
4 |
Identificação de resíduos de treonina e tirosina importantes na regulação da atividade do receptor P2X4 humano através de mutagênese sítio-dirigida / Identification of threonine and tyrosine residues important for human P2X4 receptor activity by site-directed mutagenesis.Cheffer, Arquimedes 19 June 2013 (has links)
O receptor P2X4 (canal iônico controlado por adenosina-5\'-trifosfato-ATP) está amplamente distribuído no sistema nervoso central e, após sua ativação, pode regular os níveis de cálcio intracelulares via permeação direta e por ativação de canais de cálcio voltagem-dependentes. Tem sido proposto que a atividade do receptor pode ser importante na plasticidade sináptica. Tendo em vista a importância do receptor P2X4, sobretudo na fisiologia do sistema nervoso central, é útil caracterizá-lo farmacologicamente e entender os mecanismos moleculares que regulam sua atividade. Examinamos o papel que resíduos específicos N- e C-terminais desempenham na atividade do receptor P2X4 humano, combinando técnicas de biologia molecular, bioquímica e patch-clamp em células de rim de embrião humano (células HEK-293T). Células HEK-293T expressando o receptor P2X4 wild-type apresentaram correntes iônicas, cujas amplitudes dependeram da concentração de ATP, fornecendo um valor de EC50 de 1,37 ± 0,21 µM. Os receptores mutantes E14A e D16A exibiram respostas ao ATP equiparáveis àquelas do receptor selvagem, ao passo que os mutantes Y15A e T17A não foram funcionais, apesar de serem expressos na membrana plasmática das células. A inibição de tirosina fosfatases por pervanadato diminuiu fortemente correntes induzidas por ATP. Subsequente análise de citometria de fluxo na presença de um anticorpo contra resíduos de fosfotirosina indicaram que, entre as células que expressam o receptor P2X4, a percentagem de células fosfo-tirosina-positivas é a mesma para os mutantes Y372A (86 ± 10%) e Y378A (79 ± 6.9%), mas substancialmente menor para os mutantes Y15A (35 ± 12%), Y367A (48 ± 6.4%) e Y372F (31 ± 1.7%), quando comparados com células que expressam o receptor wild-type (76 ± 5.6%). Resultados semelhantes foram obtidos quando quantificamos a expressão relativa de proteínas fosforiladas em resíduos de tirosina e expressamos através dos valores de intensidade de fluorescência média. Ensaios de western-blot revelaram que mesmo o mutante T17A é fosforilado em resíduos de treonina, sugerindo que o receptor P2X4 contém outros sítios de fosforilação. Entretanto, nenhum sinal de fosfotirosina foi detectado no receptor wild-type e nos mutantes, em que resíduos de tirosina foram substituídos por alanina ou fenilalanina. Não parece ser o resíduo Y15 o alvo de tal fosforilação, cabendo a ele um papel estrutural mais importante. Nossos dados também sugerem que a fosforilação em resíduos de tirosina de proteínas intermediárias regula a atividade do receptor P2X4. / The human P2X4 receptor (ATP-gated ion channel) is widely distributed in the CNS and, after activation, participates in regulation of levels of intracellular calcium through direct permeation and activation of voltage-dependent calcium channels with well-defined functions including synaptic plasticity. Given the importance of the P2X4 receptor, especially in CNS physiology, we investigated the role that specific N- and C-termini residues play in human P2X4 receptor activity, by combining techniques of molecular biology, biochemistry and patch-clamping in human embryonic kidney cells (HEK-293T cells). HEK-293T cells expressing the wild-type P2X4 receptor showed ionic currents whose amplitudes depended on the ATP concentration, providing an EC50 value of 1.37 ± 0.21 mM. E14A and D16A receptor mutants exhibited responses to ATP comparable to those ones of wild-type receptor, whereas Y15A and T17A mutants were not functional, despite being expressed in the plasma membrane of cells. The inhibition of tyrosine phosphatases by pervanadate decreased strongly ATP-induced currents. Subsequent flow cytometry analysis in the presence of an antibody against phosphotyrosine residues indicated that, among the cells that express the P2X4 receptor, the percentage of phosphotyrosine-positive cells was the same for Y372A (86 ± 10%) and Y378A (79 ± 6.9%) mutants, however, substantially lower for Y15A (35 ± 12%), Y367A (48 ± 6.4%) and Y372F (31 ± 1.7%) mutants when compared with cells expressing the wild-type receptor (76 ± 5.6%). Similar results were obtained by quantifying the relative expression of phosphotyrosine proteins. Western blot assays revealed that even the T17A mutant was phosphorylated at threonine residues, suggesting that the human P2X4 receptor also contains further phosphorylation sites. However, no phosphotyrosine-antibody signal was detected in the wild-type receptor and mutants in which tyrosine residues were replaced by alanine or phenylalanine. The residue Y15 is supposedly not the target of such phosphorylation, despite its important structural role. However, the present work indicates that tyrosine phosphorylation of intermediate signaling proteins regulates P2X4 receptor activity.
|
5 |
Identificação de resíduos de treonina e tirosina importantes na regulação da atividade do receptor P2X4 humano através de mutagênese sítio-dirigida / Identification of threonine and tyrosine residues important for human P2X4 receptor activity by site-directed mutagenesis.Arquimedes Cheffer 19 June 2013 (has links)
O receptor P2X4 (canal iônico controlado por adenosina-5\'-trifosfato-ATP) está amplamente distribuído no sistema nervoso central e, após sua ativação, pode regular os níveis de cálcio intracelulares via permeação direta e por ativação de canais de cálcio voltagem-dependentes. Tem sido proposto que a atividade do receptor pode ser importante na plasticidade sináptica. Tendo em vista a importância do receptor P2X4, sobretudo na fisiologia do sistema nervoso central, é útil caracterizá-lo farmacologicamente e entender os mecanismos moleculares que regulam sua atividade. Examinamos o papel que resíduos específicos N- e C-terminais desempenham na atividade do receptor P2X4 humano, combinando técnicas de biologia molecular, bioquímica e patch-clamp em células de rim de embrião humano (células HEK-293T). Células HEK-293T expressando o receptor P2X4 wild-type apresentaram correntes iônicas, cujas amplitudes dependeram da concentração de ATP, fornecendo um valor de EC50 de 1,37 ± 0,21 µM. Os receptores mutantes E14A e D16A exibiram respostas ao ATP equiparáveis àquelas do receptor selvagem, ao passo que os mutantes Y15A e T17A não foram funcionais, apesar de serem expressos na membrana plasmática das células. A inibição de tirosina fosfatases por pervanadato diminuiu fortemente correntes induzidas por ATP. Subsequente análise de citometria de fluxo na presença de um anticorpo contra resíduos de fosfotirosina indicaram que, entre as células que expressam o receptor P2X4, a percentagem de células fosfo-tirosina-positivas é a mesma para os mutantes Y372A (86 ± 10%) e Y378A (79 ± 6.9%), mas substancialmente menor para os mutantes Y15A (35 ± 12%), Y367A (48 ± 6.4%) e Y372F (31 ± 1.7%), quando comparados com células que expressam o receptor wild-type (76 ± 5.6%). Resultados semelhantes foram obtidos quando quantificamos a expressão relativa de proteínas fosforiladas em resíduos de tirosina e expressamos através dos valores de intensidade de fluorescência média. Ensaios de western-blot revelaram que mesmo o mutante T17A é fosforilado em resíduos de treonina, sugerindo que o receptor P2X4 contém outros sítios de fosforilação. Entretanto, nenhum sinal de fosfotirosina foi detectado no receptor wild-type e nos mutantes, em que resíduos de tirosina foram substituídos por alanina ou fenilalanina. Não parece ser o resíduo Y15 o alvo de tal fosforilação, cabendo a ele um papel estrutural mais importante. Nossos dados também sugerem que a fosforilação em resíduos de tirosina de proteínas intermediárias regula a atividade do receptor P2X4. / The human P2X4 receptor (ATP-gated ion channel) is widely distributed in the CNS and, after activation, participates in regulation of levels of intracellular calcium through direct permeation and activation of voltage-dependent calcium channels with well-defined functions including synaptic plasticity. Given the importance of the P2X4 receptor, especially in CNS physiology, we investigated the role that specific N- and C-termini residues play in human P2X4 receptor activity, by combining techniques of molecular biology, biochemistry and patch-clamping in human embryonic kidney cells (HEK-293T cells). HEK-293T cells expressing the wild-type P2X4 receptor showed ionic currents whose amplitudes depended on the ATP concentration, providing an EC50 value of 1.37 ± 0.21 mM. E14A and D16A receptor mutants exhibited responses to ATP comparable to those ones of wild-type receptor, whereas Y15A and T17A mutants were not functional, despite being expressed in the plasma membrane of cells. The inhibition of tyrosine phosphatases by pervanadate decreased strongly ATP-induced currents. Subsequent flow cytometry analysis in the presence of an antibody against phosphotyrosine residues indicated that, among the cells that express the P2X4 receptor, the percentage of phosphotyrosine-positive cells was the same for Y372A (86 ± 10%) and Y378A (79 ± 6.9%) mutants, however, substantially lower for Y15A (35 ± 12%), Y367A (48 ± 6.4%) and Y372F (31 ± 1.7%) mutants when compared with cells expressing the wild-type receptor (76 ± 5.6%). Similar results were obtained by quantifying the relative expression of phosphotyrosine proteins. Western blot assays revealed that even the T17A mutant was phosphorylated at threonine residues, suggesting that the human P2X4 receptor also contains further phosphorylation sites. However, no phosphotyrosine-antibody signal was detected in the wild-type receptor and mutants in which tyrosine residues were replaced by alanine or phenylalanine. The residue Y15 is supposedly not the target of such phosphorylation, despite its important structural role. However, the present work indicates that tyrosine phosphorylation of intermediate signaling proteins regulates P2X4 receptor activity.
|
6 |
Vliv první transmembránové domény na kinetiku desenzitizace P2X4 receptoru. / On the role of the first transmembrane domain in desensitization kinetics of the P2X4 receptor.Kalasová, Ilona January 2011 (has links)
Extracellular adenosin-5'-triphosphate (ATP) is an important signalling molecule. Cells of eukaryotic tissues release ATP and express responding purinergic receptors. Ionotropic P2X receptors are trimeric ion channels permeable for K+, Na+ and Ca2+ ions. Each subunit consists of two transmembrane domains (TM1 and TM2), an extracellular loop and intracellular N- and C- termini. The transmembrane region is formed by six helical domains. According to the known crystal structure of zfP2X4 receptor, TM1 helixes are oriented peripherally and stabilize TM2 helixes which form the ion gate. However, eletrophysiological studies revealed that TM1 might also participate in channel gating and forming of the ion pore in the open state. The aim of this work was to investigate the role of TM1 in the process of desensitization of rat P2X4 receptor using cystein-scanning mutagenesis. Mutation of two residues (in Asn32 and Tyr42) prolonged desensitization of P2X4 receptor. Moreover, experiments with a partial agonist α,β-methylenadenosin-5'-triphosphate (αβ-meATP) proved that conformation change of TM domains in the process of desensitization is independent on conformation change caused by an agonist binding. Conserved residue Tyr42 is located in the proximity of TM2 of neighbouring subunit. It probably interacts with Met336...
|
7 |
Analyse der Rolle des Purin-Rezeptors P2X4 in der Pathophysiologie der Amyotrophen Lateralsklerose durch vergleichende Untersuchung seiner Expression im ALS-Mausmodell und humanen Gewebe / expression-analysis of the purinergic receptor P2X4 in the pathophysiology in amyotrophic lateral sclerosis by comparing its regulation in the ALS-mousemodel and human tissueOstertag, Karoline Dorothea 16 April 2012 (has links)
No description available.
|
8 |
Contribution of Purinergic Receptors to Calcium Signaling in Salivary GlandBhattacharya, Sumit January 2012 (has links)
No description available.
|
9 |
Úloha variabilních řetězců na rozhraní podjednotek ve formování ATP-vazebné kapsy a funkci P2X4 receptoru / Role of variable chains at the interface between subunits in forming ATP-binding pocket and function of P2X4 receptorTvrdoňová, Vendula January 2014 (has links)
7 ABSTRACT Crystallization of the zebrafish P2X4 receptor in both open and closed states revealed conformational differences in the ectodomain structures, including the dorsal fin and left flipper domains. The role of these domains in forming of ATP-binding pocket and receptor function was investigated by using alanine scanning mutagenesis of the R203- L214 (dorsal fin) and the D280-N293 (left flipper) sequences of the rat P2X4 receptor and by examination of the responsiveness to ATP and orthosteric analog agonists 2- (methylthio)adenosine 5'-triphosphate, adenosine 5'-(γ-thio)triphosphate, 2'(3'-O-(4- benzoylbenzoyl)adenosine 5'-triphosphate, and α,β-methyleneadenosine 5'- triphosphate. ATP potency/efficacy was reduced in 15 out of 26 alanine mutants. The R203A, N204A, and N293A mutants were essentially non-functional, but receptor function was restored by ivermectin, an allosteric modulator. The I205A, T210A, L214A, P290A, G291A, and Y292A mutants exhibited significant changes in the responsiveness to orthosteric analog agonists. In contrast, the responsiveness of L206A, N208A, D280A, T281A, R282A, and H286A mutants to analog agonists was comparable to that of the wild type receptor. These experiments, together with homology modeling, indicate that residues of the first group located in the upper part of...
|
Page generated in 0.0354 seconds