• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 3
  • 1
  • Tagged with
  • 31
  • 31
  • 31
  • 11
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power

Schmeister, Thomas 19 July 2010 (has links)
This thesis presents experimental and simulated data gathered specifically to assess air-cooled proton exchange membrane (PEM) fuel cells as a heat and electrical power source for residential combined heat and power (CHP). The experiments and simulations focused on the air-cooled Ballard Nexa fuel cell. The experimental characterization provided data to assess the CHP potential of the Nexa and validate the model used for the simulations. The model was designed to be applicable to any air-cooled PEM fuel cell. Based on hourly load data, four Nexa fuel cells would be required to meet the peak electrical load of a typical coastal British Columbia residence. For a year of operation with the four fuel cells meeting 100% of the electrical load, simultaneous heat generation would meet approximately 96% of the space heating requirements and overall fuel cell efficiency would be 70%. However, the temperature of the coolant expelled from the Nexa varies with load and is typically too low to provide for occupant comfort based on typical ventilation system requirements. For a year of operation, the coolant mean temperature rise is only 8.3 +/- 3.4 K above ambient temperature. To improve performance as a CHP heat engine, the Nexa and other air-cooled PEM fuel cells need to expel coolant at temperatures above 325 K. To determine if PEM fuel cells are capable of achieving this coolant temperature, a model was developed that simulates cooling system heat transfer. The model is specifically designed to determine coolant and stack temperature based on cooling system and stack design (i.e. geometry). Simulations using the model suggest that coolant mass flow through the Nexa can be reduced so that the desired coolant temperatures can be achieved without the Nexa stack exceeding 345 K during normal operation. Several observations are made from the presented research: 1) PEM fuel cell coolant air can be maintained at 325 K for residential space heating while maintaining the stack at a temperature below the 353 K Nafion design limits chosen for the simulations; 2) The pressure drop through PEM cooling systems needs to be considered for all stack and cooling system design geometries because blower power to overcome the pressure drop can become very large for designs specifically chosen to minimize stack temperature or for stacks with long cooling channels; 3) For the air-cooled Nexa fuel cell stack, heat transfer occurring within the fuel cell cooling channels is better approximated using a constant heat flux mean Nusselt correlation than a constant channel temperature Nusselt correlation. This is particularly true at higher output currents where stack temperature differences can exceed 8 K.
12

Transport Properties of the Gas Diffusion Layer of PEM Fuel Cells

Zamel, Nada 28 March 2011 (has links)
Non-woven carbon paper is a porous material composed of carbon composite and is the preferred material for use as the gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells. This material is both chemically and mechanically stable and provides a free path for diffusion of reactants and removal of products and is electrically conductive for transport of electrons. The transport of species in the GDL has a direct effect on the overall reaction rate in the catalyst layer. Numerical simulation of these transport phenomena is dependent on the transport properties associated with each phenomenon. Most of the available correlations in literature for these properties have been formulated for spherical shell porous media, sand and rock, which are not representative of the structure of the GDL. Hence, the objective of this research work is to investigate the transport properties (diffusion coefficient, thermal conductivity, electrical conductivity, intrinsic and relative permeability and the capillary pressure) of the GDL using experimental and numerical techniques. In this thesis, a three-dimensional reconstruction of the complex, anisotropic structure of the GDL based on stochastic models is used to estimate its transport properties. To establish the validity of the numerical results, an extensive comparison is carried out against published and measured experimental data. It was found that the existing theoretical models result in inaccurate estimation of the transport properties, especially in neglecting the anisotropic nature of the layer. Due to the structure of the carbon paper GDL, it was found that the value of the transport properties in the in-plane direction are much higher than that in the through-plane direction. In the in-plane direction, the fibers are aligned in a more structured manner; hence, the resistance to mass transport is reduced. Based on the numerical results presented in this thesis, correlations of the transport properties are developed. Further, the structure of the carbon paper GDL is investigated using the method of standard porosimetry. The addition of Teflon was found have little effect on the overall pore volume at a pore radius of less than 3 micro meters. A transition region where the pore volume increased with the increase in pore radius was found to occur for a pore radius in the range 3<5.5 micro meters regardless of the PTFE content. Finally, the reduction of the overall pore volume was found to be proportional to the PTFE content. The diffusion coefficient is also measured in this thesis using a Loschmidt cell. The effect of temperature and PTFE loading on the overall diffusibility is examined. It was found that the temperature does not have an effect on the overall diffusibility of the GDL. This implies that the structure of the GDL is the main contributor to the resistance to gas diffusion in the GDL. A comparison between the measured diffusibility and that predicted by the existing available models in literature indicate that these models overpredict the diffusion coefficient of the GDL significantly. Finally, both the in-plane and through-plane thermal conductivity were measured using the method of monotonous heating. This method is a quasi-steady method; hence, it allows the measurement to be carried out for a wide range of temperatures. With this method, the phase transformation due to the presence of PTFE in the samples was investigated. Further, it was found that the through-plane thermal conductivity is much lower than its in-plane counterpart and has a different dependency on the temperature. Detailed investigation of the dependency of the thermal conductivity on the temperature suggests that the thermal expansion in the through-plane direction is positive while it is negative in the in-plane direction. This is an important finding in that it assists in further understanding of the structure of the carbon paper GDL. Finally, the thermal resistance in the through-plane direction due to fiber stacking was investigated and was shown to be dependent on both the temperature and compression pressure.
13

AC Impedance Spectroscopy Analysis of Improved Proton Exchange Membrane Fuel Cell Performance via Direct Inlet Humidity Control

Tan, Li 06 December 2010 (has links)
No description available.
14

Design, Scale-Up, and Integration of an Ammonia Electrolytic Cell with a Proton Exchange Membrane (PEM) Fuel Cell

Biradar, Mahesh B. January 2007 (has links)
No description available.
15

Investigation of CO Tolerance in Proton Exchange Membrane Fuel Cells

Zhang, Jingxin 08 July 2004 (has links)
"The need for an efficient, non-polluting power source for vehicles in urban environments has resulted in increased attention to the option of fuel cell powered vehicles of high efficiency and low emissions. Of various fuel cell systems considered, the proton exchange membrane (PEM) fuel cell technology seems to be the most suitable one for the terrestrial transportation applications. This is thanks to its low temperature of operation (hence, fast cold start), and a combination of high power density and high energy conversion efficiency. Besides automobile and stationary applications (distributed power for homes, office buildings, and as back-up for critical applications such as hospitals and credit card centers), future consumer electronics also demands compact long-lasting sources of power, and fuel cell is a promising candidate in these applications. The goal of a cost effective and high performance fuel cell has resulted in very active multidisciplinary research. Although significant progress has been made on PEM fuel cells over the last twenty years, further progress in fuel cell research is still needed before the commercially viable fuel cell utilization in transportation, potable and stationary applications. A chief goal among others is the design of PEM fuel cells that can operate with impure hydrogen containing traces of CO, which has been the objective of this research. Standard Pt and PtRu anode catalyst has been studied systematically under practical fuel cell conditions, in an attempt to understand the mechanism and kinetics of H2/CO electrooxidation on these noble metal catalysts. In the study of Pt as anode catalyst, it was found that the fuel cell performance was strongly affected by the anode flow rate and cathode oxygen pressure. A CO electrooxidation kinetic model was developed taking into account the CO inventory in the anode, which can successfully simulate the experimental results. It was found that there is finite CO electrooxidation even on Pt anode with H2/CO as anode feed. Thus, anode overpotential and outlet CO concentration is a function of anode inlet flow rate at a constant current density. The on-line monitoring of CO concentration in PEM fuel cell anode exit has proved that the ~{!0~}ligand mechanism~{!1~} and ~{!0~}bifunctional mechanism~{!1~} coexist as the CO tolerance mechanisms for PtRu anode catalyst. For PtRu anode catalyst, sustained potential oscillations were observed when the fuel cell was operated at constant current density with H2/CO as anode feed. Temperature was found to be the key bifurcation parameter besides current density and the anode flow rate for the onset of potential oscillations. The anode kinetic model was extended further to unsteady state which can reasonably reproduce and adequately explain the oscillatory phenomenon. The potential oscillations are due to the coupling of anode electrooxidation of H2 and CO on PtRu alloy surface, on which OHad can be formed more facile, preferably on top of Ru atoms at lower overpotentials. One parameter bifurcation and local linear stability analysis have shown that the bifurcation experienced during the variation of fuel cell temperature is a Hopf bifurcation, which leads to stable potential oscillations when the fuel cell is set at constant current density. It was further found that a PEM fuel cell operated in an autonomous oscillatory state produces higher time-averaged cell voltage and power density as compared to the stable steady-state operation, which may be useful for developing an operational strategy for improved management of power output in PEM fuel cells with the presence of CO in anode feed. Finally, an Electrochemical Preferential Oxidation (ECPrOx) process is proposed to replace the conventional PrOx for cleaning CO from reformate gas, which can selectively oxidized CO electrochemically while generating supplemental electrical power without wasting hydrogen."
16

Synthesis of Two Monomers for Proton Exchange Membrane Fuel Cells (PEMFCs)

Alayyaf, Abdulmajeed A 01 May 2016 (has links)
The overall goal of this research is to synthesize two different monomers for proton exchange membrane (PEM) Fuel Cells. Such monomers are proposed to be polymerized to improve the efficiency and compatibility of electrodes and electrolytes in PEM fuel cells. The first target is to synthesize 4-diazonium-3-fluoro PFSI zwitterionic monomer. Three steps were carried out in the lab. First one was the ammonolysis of 3-fluoro-4-nitrobenzenesulfonyl chloride. Second reaction was the bromination of Nafion monomer. The next coupling reaction, between brominated Nafion monomer and the 3-fluoro-4-nitrobenzenesulfonamide, was failed. The obstacles involve the harsh reaction condition and troublesome purification procedure. The second target is to synthesize 5-nitro-1, 3-benzenedisulfonamide. According to the literature, this synthesis was also designed as three steps: 1)nitration of sodium 1, 3-benzenedisulfonate salt; 2)chlorination of sodium 5-nitro-1, 3-benzenedisulfonate salt; and 3)ammonolysis of 5- nitro-1, 3- benzenedisulfonyl chloride. This monomer is expected to be copolymerized for membrane electrolyte in PEM fuel cells.
17

A Two Dimensional Model of a Direct Propane Fuel Cell with an Interdigitated Flow Field

Khakdaman, Hamidreza 18 April 2012 (has links)
Increasing environmental concerns as well as diminishing fossil fuel reserves call for a new generation of energy conversion technologies. Fuel cells, which convert the chemical energy of a fuel directly to electrical energy, have been identified as one of the leading alternative energy conversion technologies. Fuel cells are more efficient than conventional heat engines with minimal pollutant emissions and superior scalability. Proton Exchange Membrane Fuel Cells (PEMFCs) which produce electricity from hydrogen have been widely investigated for transportation and stationary applications. The focus of this study is on the Direct Propane Fuel Cell (DPFC), which belongs to the PEMFC family, but consumes propane instead of hydrogen as feedstock. A drawback associated with DPFCs is that the propane reaction rate is much slower than that of hydrogen. Two ideas were suggested to overcome this issue: (i) operating at high temperatures (150-230oC), and (ii) keeping the propane partial pressure at the maximum possible value. An electrolyte material composed of zirconium phosphate (ZrP) and polytetrafluoroethylene (PTFE) was suggested because it is an acceptable proton conductor at high temperatures. In order to keep the propane partial pressure at the maximum value, interdigitated flow-fields were chosen to distribute propane through the anode catalyst layer. In order to evaluate the performance of a DPFC which operates at high temperature and uses interdigitated flow-fields, a computational approach was chosen. Computational Fluid Dynamics (CFD) was used to create two 2-D mathematical models for DPFCs based on differential conservation equations. Two different approaches were investigated to model species transport in the electrolyte phase of the anode and cathode catalyst layers and the membrane layer. In the first approach, the migration phenomenon was assumed to be the only mechanism of proton transport. However, both migration and diffusion phenomena were considered as mechanisms of species transport in the second approach. Therefore, Ohm's law was used in the first approach and concentrated solution theory (Generalized Stefan-Maxwell equations) was used for the second one. Both models are isothermal. The models were solved numerically by implementing the partial differential equations and the boundary conditions in FreeFEM++ software which is based on Finite Element Methods. Programming in the C++ language was performed and the existing library of C++ classes and tools in FreeFEM++ were used. The final model contained 60 pages of original code, written specifically for this thesis. The models were used to predict the performance of a DPFC with different operating conditions and equipment design parameters. The results showed that using a specific combination of interdigitated flow-fields, ZrP-PTFE electrolyte having a proton conductivity of 0.05 S/cm, and operating at 230oC and 1 atm produced a performance (polarization curve) that was (a) far superior to anything in the DPFC published literature, and (b) competitive with the performance of direct methanol fuel cells. In addition, it was equivalent to that of hydrogen fuel cells at low current densities (30 mA/cm2).
18

Development Of Organic-inorganic Composite Membranes For Fuel Cell Applications

Erdener, Hulya 01 July 2007 (has links) (PDF)
Hydrogen is considered to be the most promising energy carrier of the 21st century due to its high energy density and sustainability. The chemical energy of hydrogen can be directly converted into electricity by means of electrochemical devices called fuel cells. Proton exchange membrane fuel cells (PEMFC) are the most preferred type of fuel cells due to their low operating temperatures enabling fast and easy start-ups and quick responses to load changes. One of the most important components of a PEMFC is the proton conducting membrane. The current membrane technology is based on perfluorosulfonic acid membranes and the most common one being Nafion. Although these membranes have good thermal and chemical stability, mechanical strength and high proton conductivities, they tend to dehydrate very fast at high temperatures and low relative humidity leading to poor fuel cell performances. Moreover, the high manufacturing cost of these membranes limits the mass-production of PEMFC&amp / #8217 / s in near future. The aim of this study is to develop alternative PEMFC membranes that have sufficient thermal and chemical stability, mechanical strength and comparable proton conductivity and fuel cell performances with Nafion membranes at relatively low cost. In this context, organic-inorganic composite membranes and blends were developed. A relatively cheap and commercially available polymer, polyether ether ketone, (PEEK), was chosen as the membrane matrix for its high thermal and mechanical stability and improvable proton conductivity via post-sulfonation. The proton conductivity of SPEEK membrane (at DS 68%) was 0.06 S/cm at 60&deg / C, and this conductivity was further increased to 0.13 S/cm with the introduction of zeolite beta crystals as inorganic fillers. The conductivity of a SPEEK blend (25wt% SPES-75wt% SPEEK) membrane was 0.08 S/cm at 90&deg / C. In PEMFC performance tests, 397 mA/cm2 was obtained for SPEEK membrane (DS 56%) at 0.6V for a H2/O2 PEMFC working at 1 atm and 80&deg / C. This result is promising when compared to the performance of Nafion 112&reg / of 660mA/cm2 under same conditions. These results are welcomed since the target for commercially viable alternate membranes are reached.
19

A Two Dimensional Model of a Direct Propane Fuel Cell with an Interdigitated Flow Field

Khakdaman, Hamidreza 18 April 2012 (has links)
Increasing environmental concerns as well as diminishing fossil fuel reserves call for a new generation of energy conversion technologies. Fuel cells, which convert the chemical energy of a fuel directly to electrical energy, have been identified as one of the leading alternative energy conversion technologies. Fuel cells are more efficient than conventional heat engines with minimal pollutant emissions and superior scalability. Proton Exchange Membrane Fuel Cells (PEMFCs) which produce electricity from hydrogen have been widely investigated for transportation and stationary applications. The focus of this study is on the Direct Propane Fuel Cell (DPFC), which belongs to the PEMFC family, but consumes propane instead of hydrogen as feedstock. A drawback associated with DPFCs is that the propane reaction rate is much slower than that of hydrogen. Two ideas were suggested to overcome this issue: (i) operating at high temperatures (150-230oC), and (ii) keeping the propane partial pressure at the maximum possible value. An electrolyte material composed of zirconium phosphate (ZrP) and polytetrafluoroethylene (PTFE) was suggested because it is an acceptable proton conductor at high temperatures. In order to keep the propane partial pressure at the maximum value, interdigitated flow-fields were chosen to distribute propane through the anode catalyst layer. In order to evaluate the performance of a DPFC which operates at high temperature and uses interdigitated flow-fields, a computational approach was chosen. Computational Fluid Dynamics (CFD) was used to create two 2-D mathematical models for DPFCs based on differential conservation equations. Two different approaches were investigated to model species transport in the electrolyte phase of the anode and cathode catalyst layers and the membrane layer. In the first approach, the migration phenomenon was assumed to be the only mechanism of proton transport. However, both migration and diffusion phenomena were considered as mechanisms of species transport in the second approach. Therefore, Ohm's law was used in the first approach and concentrated solution theory (Generalized Stefan-Maxwell equations) was used for the second one. Both models are isothermal. The models were solved numerically by implementing the partial differential equations and the boundary conditions in FreeFEM++ software which is based on Finite Element Methods. Programming in the C++ language was performed and the existing library of C++ classes and tools in FreeFEM++ were used. The final model contained 60 pages of original code, written specifically for this thesis. The models were used to predict the performance of a DPFC with different operating conditions and equipment design parameters. The results showed that using a specific combination of interdigitated flow-fields, ZrP-PTFE electrolyte having a proton conductivity of 0.05 S/cm, and operating at 230oC and 1 atm produced a performance (polarization curve) that was (a) far superior to anything in the DPFC published literature, and (b) competitive with the performance of direct methanol fuel cells. In addition, it was equivalent to that of hydrogen fuel cells at low current densities (30 mA/cm2).
20

Παραγωγή και κατανάλωση υδρογόνου με στόχο την παραγωγή ηλεκτρικής ενέργειας μέσω κυψέλης υδρογόνου (fuel cell) τεχνολογίας πολυμερικού ηλεκτρολύτη χαμηλής θερμοκρασίας (PEM)

Νάκης, Σταύρος 27 December 2010 (has links)
Σκοπός της παρούσας διπλωματικής εργασίας είναι η μελέτη των κυψελών καυσίμου οι οποίες αποτελούν εναλλακτική πηγή τάσεως και συγκεκριμένα μια ειδικής κατηγορίας αυτών, τις λεγόμενες κυψέλες καυσίμου τύπου μεμβράνης ανταλλαγής πρωτονίων. Παρουσιάζονται οι μηχανισμοί που προκαλούν πτώση τάσεως και περιγράφονται οι θερμοδυναμικοί νόμοι που διέπουν τη λειτουργία της κυψέλης έτσι ώστε να προκύψουν οι εξίσωσεις εκέινες οι οποίες αναπαριστούν την λειτουργία της κυψέλης. Επίσης, παρουσιάζονται τα επιμέρους συστήματα που χρειάζονται για την τροφοδότηση του φορτίου και αναφέρονται διάφορα στοιχεία περί της τεχνολογίας υδρογόνου όσον αφορά τρόπους παραγωγής και αποθήκευσης καθώς και πλεονεκτήματα και μειονεκτήματα αυτού ως καύσιμο έναντι των συμβατικών καυσίμων εξαιτίας του γεγονότος ότι το υδρογόνο αποτελεί το κύριο καύσιμο για τις προαναφερθείσες συστοιχίες. Τα συστήματα κυψελών καυσίμου αναμένεται να διαδραματίσουν σπουδαίο ρόλο στην παραγωγή ισχύος στο μέλλον λόγω της αποδοτικότητας, της καθαρότητας και της αξιοπιστίας τους και λόγω φυσικά της εξάντλησης των αποθεμάτων σε συμβατικά καύσιμα.Οι κυψέλες καυσίμου μεμβράνης ανταλλαγής πρωτονίων παρουσιάζουν χαμηλή θερμοκρασία λειτουργίας και χαμηλούς χρόνους εκκίνησης και για αυτό προτιμούνται έναντι των άλλων τύπων κυψελών καυσίμων. Πραγματοποιείται πειραματική δοκιμή δυναμικών μεταβολών σε μία συστοιχία κυψέλων καυσίμου τύπου μεμβράνης ανταλλαγής πρωτονίων ισχύος 1,2kW της εταιρίας Nexa και συγκρίνονται-αξιολογούνται οι καμπύλες λειτουργίας που προκύπτουν από την πειραματική διαδικασία με αυτές που παρουσίάζονται από τον κατασκευαστή. Επίσης η προαναφερθείσα συστοιχία μοντελοποιείται στο Matlab με βάση τις εξισώσεις που διέπουν την λειτουργία της και λαμβάνοντας υπόψιν τα επιμέρους χαρακτηριστικά της συστοιχίας. Η προσαρμογή των παραμέτρων πραγματοποιήθηκε αξιοποιώντας την άμεση συσχέτιση των ηλεκτροχημικών φαινομένων που λαμβάνουν χώρα στο εσωτερικό της κυψέλης με την θερμική ανάλυση των ηλεκτρικών στοιχείων. Προκύπτουν έτσι διάφορα χρήσιμα διαγράμματα που αφορούν τόσο την χημική πλευρά του θέματος αλλά και την ηλεκτρική συμπεριφορά που ενδιαφέρει άμεσα τον Ηλεκτρολόγο Μηχανικό. Τέλος, αναπτύσσεται ένα μοντέλο στο Simulink, όπου στην έξοδο του fuel cell συνδέεται ένας μετατροπέας τύπου boost για τροφοδότηση του φορτίου και μελετάται η συμβολή του μετατροπέα αυτού στην απόκριση του συστήματος. Η βασική αρχή που διέπει την λειτουργία ενός μετατροπέα τύπου boost είναι η ιδιότητα της επαγωγής να αντιστέκεται στην μεταβολή του ρεύματος που την διαρρέει. Όταν φορτίζεται το πηνίο δρα σαν φορτίο που απορροφά ενέργεια, ενώ όταν εκφορτίζεται λειτουργεί σαν μια πηγή ενέργειας (σαν μια μπαταρία). Οι dc – dc boost μετατροπείς ρυθμίζουν την τάση εξόδου ώστε αυτή να είναι μεγαλύτερη της τάσης εισόδου. Χρησιμοποιείται ανατροφοδότηση ώστε να μεταβάλλεται κατάλληλα η παλμοδότηση των ημιαγωγικών μας στοιχείων και επομένως να αλλάζει συνεχώς ο λόγος κατάτμησης έτσι ώστε να έχουμε πάντα στην έξοδο του boost 80V. Η ύπαρξη ανατροφοδότησης είναι αναγκαία γιατί όπως μπορούμε να δούμε παρακάτω από τις κυματομορφές της εξόδου του fuel cell , η τάση δεν έχει κάποια σταθερή τιμή, αλλά αντιθέτως μεταβάλλεται συναρτήσει της φύσης και της τιμής του φορτίου. Έτσι, αν δεν γινόταν έλεγχος του λόγου κατάτμησης, η έξοδος του boost θα ακολουθούσε την έξοδο του fuel cell με τις ίδιες διακυμάνσεις και απλώς θα ήταν ενισχυμένη σε πλάτος κατά ένα ποσοστό. Η προσαρμογή των παραμέτρων του προτεινόμενου μοντέλου βασίστηκε στην ελαχιστοποίηση του σφάλματος μεταξύ πειραματικών δεδομένων και αποτελεσμάτων προσομοίωσης. Επιβεβαιώθηκε ότι το fuel cell του μοντέλου παρουσιάζει παρόμοια λειτουργία με αυτό της πειραματικής διάταξης και γίνονται φανερά τα πλεονεκτήματα από την τοποθέτηση ενός τέτοιου είδους μετατροπέα στην έξοδο της συστοιχίας. Όπως φαίνεται από τις καμπύλες που αναπαριστούν τον χρόνο της δυναμικής απόκρισης της κυψέλης καυσίμου τύπου PEM, αυτή κυμαίνεται μεταξύ μερικών εκατοντάδων millisecond (περίπου 0.5sec). Η καθυστέρηση αυτή που παρουσιάζεται στην δυναμική απόκριση της κυψέλης οφείλεται στο γεγονός ότι η αντλία του αέρα αδυνατεί να προσφέρει αρκετή ποσότητα αέρα ώστε να αντιδράσει με το απαιτούμενο υδρογόνο με άμεση συνέπεια στο εσωτερικό της κυψέλης (φαινόμενο διπλής ηλεκτροστιβάδας) και παρουσιάζεται στο ισοδύναμο ηλεκτρικό κύκλωμα με πυκνωτές μεγάλων τιμών (μερικών Farad). Η αδυναμία της κυψέλης να ανταπεξέλθει ακαριαία στις αλλαγές φορτίου, οφείλεται και στις απώλειες διάχυσης. Σε γενικές γραμμές όμως η συστοιχία των κυψελών καυσίμου μεμβράνης ανταλλαγής πρωτονίων που μελετήθηκε παρουσίασε καλή δυναμική συμπεριφορά πράγμα που δείχνει ότι τέτοιου είδους συστήματα αδιαμφισβήτητα αποτελούν μία υποσχόμενη τεχνολογία παραγωγής ηλεκτρικής ενέργειας και ενισχύει το επιχείρημα της χρησιμοποίησης κυψελών καυσίμου σε εφαρμογές ηλεκτροκίνησης Η μελλοντική ανάπτυξη τέτοιων συστημάτων που χρησιμοποιούν ως καύσιμο το υδρογόνο αναμένεται ραγδαία δεδομένου των ενεργειακών προβλημάτων που αντιμετωπίζει η παγκόσμια κοινότητα σήμερα. Πρόκειται για συστήματα τα οποία μπορούν να δώσουν ανεξαρτησία και φιλική προς το περιβάλλον ενέργεια. / The purpose of this essay is the study of fuel cells (an alternative source of energy) and especially PEM fuel cells. The mechanisms that cause voltage drop in addition to the thermodynamic laws are presented in order to describe the stack operation. Moreover, the individual systems that be needed for the supply of load and some important imformatiοns about the technology of hydrogen (production, storage, advantages, disadvantages of this against conventional fuels) due to the fact that this is the main fuel for these types of fuel cells. Fuel cells are expected to play an important role in the power generation field due to the virtue of the ones inherent clean, efficient and reliable function. The proton exchange membrane fuel cells is the one which draws more attention-compared to current technologies-due to its low operating temperature, ease of start-up and shot-down, and its robustness and solidity. These advantages make it a promising technology for alternative power supply on future vehicles. The current thesis focuses on the experimental data analysis of dynamic responses on a proton exchange membrane fuel cell (1.2kW). This analysis is followed by depicting and comparing the curves that are made out from the experimental procesure with those given by the data sheet. This system is also simulated with Matlab Tools. The several diagrams show many useful aspects about the chemical side of subject in addition to the electric behavior of the stack that concerns mostly the Electric Engineer. A valid model for Fuel Cell and a DC/DC converter that be connected in series is being simulated with simulink tools based on the NEXA 1.2kW operational data. The design of the PEM Fuel Cell is based on the parameters that have been used during the experimental procedure in order to compare the equivalent results. The key principle that drives the boost converter is the tendency of an inductor to resist changes in current. When being charged it acts as a load and absorbs energy (somewhat like a resistor), when being discharged, it acts as an energy source (somewhat like a battery). The main advantages of the boost converter are higher efficiency & reduced component count and it converts the unregulated voltage into desired regulated voltage by varying the duty cycle at high switching frequency lowering the size and cost of energy storage components. The selection of components like boost inductor value and capacitor value is very important to reduce the ripple generation for a given switching frequency. In general, the dynamic behaviour of PEM fuel cell that were presented is quite satisfactory and thats why such systems uncontradictable constitute a promising technology for electric energy production. The future development of hydrogen fuel cell systems for autonomous and interconnected electric power production is expected very high. These systems can produce clean and environmentally friendly energy. Renewable power sources are the most important solution to the global warming problem.

Page generated in 0.0962 seconds