201 |
Jämförelse av karteringsmetoder inför bergklassificering i tunnlarForsberg, Viktor, Granström, Filip January 2016 (has links)
Säkerhet är ständigt en primär fråga vid byggnation, detta innefattar även drivning av tunnlar. För att förhindra ras eller utglidning av block undersöks och klassificeras därför berget. Tunneln som undersöks i denna studie kostar ungefär 7000 kr/timme att driva. Därför finns det mycket pengar att spara på effektivisering av arbetsmoment, däribland kartering. I denna uppsats jämförs därför tre olika karteringsmetoder såsom konventionell kartering, fotogrammetri och laserskanning. De olika metodernas Q- och RMR-index jämförs sedan med hänsyn till de olika ingående parametrarna i klassificeringssystemen. Syftet med studien är att studera om de nya karteringsmetoderna har några ekonomiska och/eller säkerhetsmässiga fördelar, samt även eventuella fördelar vad gäller lagring av bergets kvalitet och egenskaper i digitalt format. Därutöver även att studera om de nya teknikerna kan ersätta den konventionella karteringsmetoden helt eller till viss del. Laserskanning och fotogrammetri kan inte helt ersätta dagens konventionella kartering. Detta på grund av att alla parametrar för klassificeringssystemen inte kan observeras/tolkas i de framställda digitala modellerna, utan måste göras på plats. Dock kan de digitala metoderna kombineras med den konventionella och därmed är en fullständig kartering och klassificering möjlig. Däremot finns andra fördelar med de digitala metoderna såsom digitala lagringsmöjligheter, detaljrika lättolkade modeller och att de är tidseffektiva över längre sträckor. / Safety is always a primary concern during construction, even during tunnel construction. To prevent rock fall or sliding of blocks the rock has to be examined and classified. The tunnel examined in this report costs about 7000 SEK/hour to construct. Therefore, a lot of money can be saved by streamlining the work process, including mapping of geological structures. In this paper three mapping methods are compared, such as traditional geological mapping, photogrammetry and laser scanning. The Q and RMR index from the three different methods are then compared with respect to the various parameters included in the classification systems. The purpose of this study is to find out whether the new mapping methods have any financial and/or safety benefits, as well as any potential benefits in terms of storage in digital format of information about the rock quality and features, or not. The purpose is also to examine if the new technologies could replace the traditional mapping method fully or partially. Laser scanning and photogrammetry cannot completely replace today’s conventional mapping. This is because some of the parameters are not possible to be observed and interpreted in the produced digital models, but must be done in situ. However, there are other benefits of the digital methods such as digital storage capabilities, detailed, easily interpretable models and that it takes less time to map large areas or long distances.
|
202 |
Cryogenic soil processes in a changing climate / Kryogena mark processer i ett föränderligt klimatBecher, Marina January 2016 (has links)
A considerable part of the global pool of terrestrial carbon is stored in high latitude soils. In these soils, repeated cycles of freezing and thawing creates soil motion (cryoturbation) that in combination with other cryogenic disturbance processes may play a profound role in controlling the carbon balance of the arctic soil. Conditions for cryogenic soil processes are predicted to dramatically change in response to the ongoing climate warming, but little is known how these changes may affect the ability of arctic soils to accumulate carbon. In this thesis, I utilize a patterned ground system, referred to as non-sorted circles, as experimental units and quantify how cryogenic soil processes affect plant communities and carbon fluxes in arctic soils. I show that the cryoturbation has been an important mechanism for transporting carbon downwards in the studied soil over the last millennia. Interestingly, burial of organic material by cryoturbation appears to have mainly occurred during bioclimatic events occurring around A.D. 900-1250 and A.D. 1650-1950 as indicated by inferred 14C ages. Using a novel photogrammetric approach, I estimate that about 0.2-0.8 % of the carbon pool is annually subjected to a net downward transport induced by the physical motion of soil. Even though this flux seems small, it suggests that cryoturbation is an important transporter of carbon over centennial and millennial timescales and contributes to translocate organic matter to deeper soil layers where respiration proceeds at slow rates. Cryogenic processes not only affect the trajectories of the soil carbon, but also generate plant community changes in both species composition and abundance, as indicated by a conducted plant survey on non-sorted circles subjected to variable differential frost heave during the winter. Here, disturbance-tolerant plant species, such as Carex capillaris and Tofieldia pusilla, seem to be favoured by disturbance generated by the differential heave. Comparison with findings from a previous plant survey on the site conducted in the 1980s suggest that the warmer temperatures during the last decades have resulted in decreased differential heave in the studied non-sorted circles. I argue that this change in cryogenic activity has increased abundance of plants present in the 1980s. The fact that the activity and function of the non-sorted circles in Abisko are undergoing changes is further supported by their contemporary carbon dioxide (CO2) fluxes. Here, my measurements of CO2 fluxes suggest that all studied non-sorted circles act as net CO2 sources and thus that the carbon balance of the soils are in a transition state. My results highlight the complex but important relationship between cryogenic soil processes and the carbon balance of arctic soils.
|
203 |
NEW ULTRA-LIGHTWEIGHT STIFF PANELS FOR SPACE APERTURESBlack, Jonathan T. 01 January 2006 (has links)
Stiff, ultra-lightweight thermal-formed polyimide panels considered in this dissertation are examples of next generation gossamer structures that resolve some of the technology barriers of previous, membrane-dominated gossamer designs while maintaining their low mass and low stowage volume characteristics. The research involved statically and dynamically characterizing and modeling several of these panels to develop validated computer models which can be used to determine the effects of changing manufacturing parameters and scalability. Static characterization showed substantial local nonlinear behavior that was replicated by new physics-based finite element models, and global linear bending behavior that was modeled using classical shell finite elements incorporating effective properties in place of bulk material properties to represent the unique stiffening structure of these panels. Dynamic characterization was performed on individual panels using standard impact hammer and accelerometer testing, enabling successful extraction of several structural natural frequencies and mode shapes. Additionally, the three dimensional time history of the surface of the panels was rendered from video data, and temporal filters were applied to the data to examine the frequency content. These data were also correlated to the shell element numerical models. Overall, the research contributes to the total knowledge base of gossamer technologies, advances stiff panel-based structures toward space qualification, and demonstrates their potential for use in apertures and other spacecraft.
|
204 |
Volume Change of the Tasman Glacier Using Remote SensingThomas, Joel Spencer January 2008 (has links)
Mountain glaciers are expected to be the greatest contributor to sea level rise over the next century. Glaciers provide a good indicator of global climate and how to monitor their change is an increasingly important issue for climate science and for sea level rise forecasts. However, there has been
little direct measurement of glacier volume change in New Zealand.
This study explores the use of remotely sensed data for measuring glacier volume change from 1965 to 2006. Digital photogrammetric methods were used to extract topographic data of the Tasman Glacier from aerial photography and ASTER imagery for the years 1965, 1986, 2002 and 2006.
SRTM C band data from 2000 were also analysed.
Data were compared to an existing digital elvation model produced from the New Zealand Digital Topographic Database to test for their reliability. Using regression analysis, the data were filtered and points representing rock were used to correct points on the glacier ice for vertical bias. The quality of the data extracted from the aerial photography was good on rock and debris covered ice, but poor on snow. The data extracted from ASTER was much more reliable on snow in the upper glacier than the aerial photography, but was very poor in the lower debris covered region of the glacier. While the quality of the SRTM data is very high, there is a second order distortion
present in the data that is evident over elevation differences. However, the overall mean difference of the SRTM rock from TOPODATA is close to zero.
An overall trend could be seen in the data between dates. However, the 2006 ASTER data proved unreliable on the debris covered section of the glacier. Total volume change is therefore calculated for the period between 1965 and 2002. The data show a loss of 3:4km³ or 0:092km³ per year, an estimated 6% of the total ice in New Zealand. This is compared to estimates using the annual end of summer snowline survey between 1977 and 2005 of 1:78 km³, or 0:064km³ per year.
The spatial resolution of ASTER makes high temporal resolution monitoring of volume change unlikely for the New Zealand glaciers. The infrequency of aerial photography, the high cost and vast time involved in extracting good quality elevation data from aerial photography makes it impractical for monitoring glacier volume change remotely. However, SRTM and other radar sensors may provide a better solution, as the data do not rely heavily on user processing.
|
205 |
Assessment of remote data capture systems for the characterisation of rock fracture networks within slopesGwynn, Xander Peter January 2009 (has links)
The use of remote techniques to capture the geometrical characteristics of rock masses has seen increased use and development in recent years. Apart from the obvious improved Health and Safety aspects, remote techniques allow rapid collection of digital data that can be subsequently analysed to provide input parameters for a variety of geomechanical applications. Remote data capture is a new technique used to collect geotechnical data and little independent work has been done concerning the comparative limitations and benefits of photogrammetry and laser scanning. Photogrammetry and laser scanning produce three dimensional digital representations of a studied rock face which can then be mapped for geotechnical data using specialist software. Research conducted at Camborne School of Mines, University of Exeter has focussed on developing robust and flexible methodologies for remote data capture techniques, namely photogrammetry and laser scanning. Geotechnical characterisation for photogrammetry was tested using the CSIRO Sirovision software and laser scanning was used with SplitFX from Split Engineering. A comparative method of assessing the error between orientation measurements was developed based on calculating the pole vector difference between remotely captured and traditionally hand-mapped data. This allowed for testing of the benefits of the remote data capture systems and limitations whilst comparing them with conventional hand-mapping. The thesis also describes the results of detailed comparisons between hand-mapping, photogrammetric and laser scanned data collection for discontinuity orientation, roughness, discontinuity trace lengths and potential end-use applications. During fieldwork in Cornwall, Brighton Cliffs and northern France it was found that remote data capture techniques struggled to collect orientation data from intensely fractured rock masses where features are primarily represented as discontinuity traces. It was found that both photogrammetry and laser scanning produce orientation data comparable to traditionally mapped data, with an average pole vector difference less than 12° from data mapped from the Tremough Campus road cutting to the University of Exeter’s Cornwall Campus. Set analysis on 151 comparable data points yielded a maximum set pole vector difference of 9.8°, where the closest difference was 2.24°. Testing the accuracy of discontinuity trace orientations captured by photogrammetry using the pole vector difference methods indicate that planar derived orientations are more accurate, with an average difference of 16.67° compared to 37.72°. This thesis contains the reviews and analyses of photogrammetry and laser scanning for use in characterising natural and manmade rock slopes. Improved field and post-processing methodologies have been developed to aid the safe, efficient and suitable geotechnical characterisation of rock fracture networks. The continual development and use of remote mapping techniques, whilst supplementing their unique qualities with traditional mapping, have the capability to revolutionise rock mass mapping. Particular development needed is the implementation of ISRM guidelines to standardise photogrammetric and laser scanning fieldwork and post-processing data analysis.
|
206 |
THE EVALUATION OF MEASURING STREAM CHANNEL MORPHOLOGY USING UNMANNED AERIAL SYSTEM-BASED STRUCTURE-FROM-MOTION PHOTOGRAMMETRYBallow, William 12 August 2016 (has links)
As part of a collaborative project at a stream segment reach on Proctor Creek in Atlanta, GA, UAV-based SfM photogrammetry was tested as a method for collecting fluvial topographic data relative to traditional USGS total station surveying methods. According to the USGS method, 11 transects were surveyed, and imagery was collected via a UAV to create a SfM DEM. The resulting DEM was incomplete but showed promise for the SfM method. Two additional stream segments were chosen in the Atlanta area, the first along SFPC in DHCL and the second along NFPC near Buford Hwy. For each site 11 transects were surveyed along with submerged GCPs so that the SfM DEMs could be compared to the surveyed data. The BW and BD values were collected from the TS transects and the DEM transects and compared according to the percent difference between the two. For SFPC, the average percent difference values for BW and BD were, respectively, 15.9 and 26.0 with standard deviations of 15.7 and 18.0. For NFPC, the BW and BD average percent difference values were 6.8 and 7.5 with standard deviations of 3.9 and 5.9. The GCPs were also compared for each site using linear regressions. There was no strong correlation for SFPC (R2 = 0.31 and p-value > 0.05), but there was a strong relationship indicated for NFPC (R2 = 0.78 and p-value < 0.05). While the results of this study are variable, the results do indicate promise for future work on this emerging method.
|
207 |
Large volume artefact for calibration of multi-sensor projected fringe systemsTarvaz, Tahir January 2015 (has links)
Fringe projection is a commonly used optical technique for measuring the shapes of objects with dimensions of up to about 1 m across. There are however many instances in the aerospace and automotive industries where it would be desirable to extend the benefits of the technique (e.g., high temporal and spatial sampling rates, non-contacting measurements) to much larger measurement volumes. This thesis describes a process that has been developed to allow the creation of a large global measurement volume from two or more independent shape measurement systems. A new 3-D large volume calibration artefact, together with a hexapod positioning stage, have been designed and manufactured to allow calibration of volumes of up to 3 x 1 x 1 m3. The artefact was built from carbon fibre composite tubes, chrome steel spheres, and mild steel end caps with rare earth rod magnets. The major advantage over other commonly used artefacts is the dimensionally stable relationship between features spanning multiple individual measurement volumes, thereby allowing calibration of several scanners within a global coordinate system, even when they have non-overlapping fields of view. The calibration artefact is modular, providing the scalability needed to address still larger measurement volumes and volumes of different geometries. Both it and the translation stage are easy to transport and to assemble on site. The artefact also provides traceabitity for calibration through independent measurements on a mechanical CMM. The dimensions of the assembled artefact have been found to be consistent with those of the individual tube lengths, demonstrating that gravitational distortion corrections are not needed for the artefact size considered here. Deformations due to thermal and hygral effects have also been experimentally quantified. The thesis describes the complete calibration procedure: large volume calibration artefact design, manufacture and testing; initial estimation of the sensor geometry parameters; processing of the calibration data from manually selected regions-of-interest (ROI) of the artefact features; artefact pose estimation; automated control point selection, and finally bundle adjustment. An accuracy of one part in 17 000 of the global measurement volume diagonal was achieved and verified.
|
208 |
Estimation de pose de grands blocs d'images panoramiques issues de systèmes de numérisation mobile / Pose estimation on large block of panoramic images from mobile mapping systemsCannelle, Bertrand 04 December 2013 (has links)
Tirée par le développement et la démocratisation des globes numériques et des systèmes de géolocalisation grand public, la numérisation 3D mobile terrestre en milieux urbains s'est développée de manière très importante ces dix dernières années. Les principaux verrous résiduels de ces systèmes reste d'une part la localisation précise des données pour certaines applications (conduite autonome urbaine, levers de géomètres, etc.) du fait des masques et multi-trajets GPS dans les canyons urbains et d'autre part le passage à l'échelle du traitement de l'information vu les volumes de données considérables acquis chaque jour (plusieurs To).La première partie de cette thèse est consacrée à la présentation de la numérisation mobile, aussi bien du point de vue système que du point de vue usage. Une description fine du système Stéréopolis V2, véhicule de numérisation mobile multi-caméras développée au laboratoire MATIS de l'Institut National de l'Information Géographique et Forestière, est faite afin de présenter les données utilisées dans cette thèse. Les blocs d'images manipulés dans ces travaux sont constitués de plusieurs centaines de milliers à un million d'image. La seconde partie est consacrée à la calibration du système: calibration intrinsèque de caméra, tout d'abord, en utilisant une géométrie d'acquisition de type panoramique, qui permet de s'affranchir de réseaux de cibles 3D métrologiques. Une calibration extrinsèque des imageurs du véhicule, ensuite, qui permet de déterminer de façon précise la position et l'orientation de caméras sur un dispositif de numérisation mobile. Deux procédures sont détaillées et comparées: l'une dite "off-line" nécessitant une acquisition spécifique avec un réseau de cibles métrologiques et l'autre dite "on-line" utilisant uniquement les données d'acquisition standards. Nous démontrons que la méthode "on-line" produit dans les mêmes conditions une précision comparable à celle "off-line" tout en étant plus adaptée aux variations de conditions d'acquisition in-situ. La troisième partie détaille le processus de compensation par faisceaux appliquée aux données de numérisation mobile multi-caméras qui permet d'estimer la pose d'un grand nombre d'images. La mise en équation ainsi que différents cas d'utilisations de la méthode sont explicités. La structuration et la gestion des données dans un entrepôt est elle aussi développée car elle permet la gestion d'importants volumes et donc le passage à l'échelle tout en restant performante. La quatrième et dernière partie propose différentes méthodes de recalage qui peuvent être utilisées aussi bien de manière individuelle que combinées afin de permettre de mettre en cohérence des séquences d'images distinctes (boucles, passage multi-dates, etc.) dans des contextes applicatifs différents / Mobile mapping technology has grown exponentially the last ten years, particularly due to advances in computer and sensor performances. However, the very accurate positioning of data generated by such technique remains a crucial issue. The first part of this thesis presents the mobile mapping system that has been designed in the MATIS lab of IGN as well as its operational use. A detailed analysis of image data is proposed and data used for this work is discussed. The second part tackles the standard calibration procedure. First, camera calibration is performed by using a panoramic-based acquisition geometry, which allows not to required ground control points. Secondly, a full calibration procedure dedicated to the Stéréopolis V2is proposed so as to determine accurately the position and orientation of all the cameras. For that purpose, two procedures are explained : one requiring an area with points positioned with high accuracy ,and the other one based only the data acquisition. The third section details the compensation applied to the mobile mapping car that allows to improve poses of a large number of images. The mathematical formulation is proposed, and various cases of the method are explained. Data management is also presented since it is a mandatory step for efficient large amount of data management The fourth and final part of the thesis presents different registration scenarii, where methods developed in this work can be used individually as well as combined with other ones so as to bring higher coherence between sequences of distinct images
|
209 |
Využití UAV pro mapování a analýzu následků povodní / Application of UAV for mapping and assessment of flood effectsVacková, Tereza January 2016 (has links)
The aim of this thesis is to devise a method for objective classification of floodplain based on spatially accurate data from UAV that allows identification of the fundamental features of floodplain and channel arising from or affecting by the floods activities. Background research is focused on floodplain forming processes; types of flood on our territory and its geomorphological effects, as well as a brief description unmanned aerial vehicle and their applicability in natural science and the flood. Proposed method was carried out on the test section - a part of meander of Javoří stream in Šumava Mountain - then was tested on complex meander belt of the same stream. Proposed method is based on applicability of standard objective classification. Elementary products from photogrammetric analysis - 2D orthophoto and 3D digital surface model - are used as basic input data. Another aim of theses is to discuss applicability of this method for assessment of fluvial form, its limits and potential development. The results indicated that success of classification will increase significantly the involvement of 3D data to classification, which from standard data from the UAV, despite the lack of absence multispectral bands doing a very valuable source of information for mapping and analysis, for example, the...
|
210 |
Understanding structure and function in semiarid ecosystems : implications for terrestrial carbon dynamics in drylandsCunliffe, Andrew Michael January 2016 (has links)
This study advances understanding of how the changes in ecosystem structure and function associated with woody shrub encroachment in semi-arid grasslands alter ecosystem carbon (C) dynamics. In terms of both magnitude and dynamism, dryland ecosystems represent a major component of the global C cycle. Woody shrub encroachment is a widespread phenomenon globally, which is known to substantially alter ecosystem structure and function, with resultant impacts on C dynamics. A series of focal sites were studied at the Sevilleta National Wildlife Refuge in central New Mexico, USA. A space-for-time analogue was used to identify how landscape structure and function change at four stages over a grassland to shrubland transition. The research had three key threads: 1. Soil-associated carbon: Stocks of organic and inorganic C in the near-surface soil, and the redistribution of these C stocks by erosion during high-intensity rainfall events were quantified using hillslope-scale monitoring plots. Coarse (>2 mm) clasts were found to account for a substantial proportion of the organic and inorganic C in these calcareous soils, and the erosional effluxes of both inorganic and organic C increased substantially across the vegetation ecotone. Eroded sediment was found to be significantly enriched in organic C relative to the contributing soil with systematic changes in OC enrichment across the vegetation transition. The OC enrichment dynamics observed were inconsistent with existing understanding (derived largely from reductionist, laboratory-based experiments) that OC enrichment is largely insignificant in the erosional redistribution of C. 2. Plant biomass: Cutting-edge proximal remote sensing approaches, using a remotely piloted lightweight multirotor drone combined with structure-from-motion (SfM) photogrammetry were developed and used to quantify biomass carbon stocks at the focal field sites. In such spatially heterogeneous and temporally dynamic ecosystems existing measurement techniques (e.g. on-the-ground observations or satellite- or aircraft-based remote sensing) struggle to capture the complexity of fine-grained vegetation structure, which is crucial for accurately estimating biomass. The data products available from the novel SfM approach developed for this research quantified plants just 15 mm high, achieving a fidelity nearly two orders of magnitude finer than previous implementations of the method. The approach developed here will revolutionise the study of biomass dynamics in short-sward ecogeomorphic systems. 3. Ecohydrological modelling: Understanding the effects of water-mediated degradation processes on ecosystem carbon dynamics over greater than observable spatio-temporal scales is complicated by significant scale-dependencies and thus requires detailed mechanistic understanding. A process-based, spatially-explicit ecohydrological modelling approach (MAHLERAN - Model for Assessing Hillslope to Landscape Erosion, Runoff and Nutrients) was therefore comprehensively evaluated against a large assemblage of rainfall runoff events. This evaluation highlighted both areas of strength in the current model structure, and also areas of weakness for further development. The research has improved understanding of ecosystem degradation processes in semi-arid rangelands, and demonstrates that woody shrub encroachment may lead to a long-term reduction in ecosystem C storage, which is contrary to the widely promulgated view that woody shrub encroachment increases C storage in terrestrial ecosystems.
|
Page generated in 0.0286 seconds