• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Survey of the Classification of Division Algebras

Ashburner, Michelle Roshan Marie January 2008 (has links)
For a given field F we seek all division algebras over F up to isomorphism. This question was first investigated for division algebras of finite dimension over F by Richard Brauer. We discuss the construction of the Brauer group and some examples. Crossed products and PI algebras are then introduced with a focus on Amitsur's non-crossed product algebra. Finally, we look at some modern results of Bell on the Gelfand-Kirillov dimension of finitely generated algebras over F and the classification of their division subalgebras.
2

A Survey of the Classification of Division Algebras

Ashburner, Michelle Roshan Marie January 2008 (has links)
For a given field F we seek all division algebras over F up to isomorphism. This question was first investigated for division algebras of finite dimension over F by Richard Brauer. We discuss the construction of the Brauer group and some examples. Crossed products and PI algebras are then introduced with a focus on Amitsur's non-crossed product algebra. Finally, we look at some modern results of Bell on the Gelfand-Kirillov dimension of finitely generated algebras over F and the classification of their division subalgebras.
3

A-identidades polinomiais em algebras associativas / A-polynomial identities in associative algebras

Gonçalves, Dimas José 12 August 2018 (has links)
Orientador: Plamen Emilov Koshlukov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-12T22:59:30Z (GMT). No. of bitstreams: 1 Goncalves_DimasJose_D.pdf: 561175 bytes, checksum: 463bf9f78a417a27d1bcf83549bc65a9 (MD5) Previous issue date: 2009 / Resumo: Nesta tese estudamos identidades polinomiais em álgebras associativas. Mais precisamente, estudamos as A-identidades satisfeitas por algumas classes importantes de álgebras. O primeiro resultado principal da tese consiste em uma descrição completa das A-identidades satisfeitas pela álgebra de Grassmann sobre um corpo algebricamente fechado e de característica o. Desta maneira respondemos em afirmativo a uma conjetura devida a Henke e Regev. Em seguida estudamos as A-identidades satisfeitas pela álgebra das matrizes triangulares superiores. Obtemos uma cota inferior para o grau mínimo de uma A-identidade satisfeita por tais álgebras. Como consequência obtemos uma resposta negativa a uma outra conjetura de Henke e Regev. Além disso, descrevemos as A-identidades de grau 5, da álgebra das matrizes triangulares superiores de ordem 2, e obtemos os graus mínimos de A-identidades satisfeitas por tais álgebras de ordem 3 e 4. / Abstract: In this PhD thesis we study polynomial identities in associative algebras. More precisely we study the A-ideIltities for several important classes of algebras. The first main result of the thesis gives a complete description of the A-identities for the Grassmann algebra over an algebraically closed field of characteristic O. In this way we give a positive answer to a conjecture due to Henke and Regev. Afterwards we study A-identities for the upper triangular matrix algebras. We give a lower bound for the minimal degree of an A-identity satisfied by such algebras. As a corollary we give a negative answer to another conjecture due to Henke and Regev. Furthermore we describe the A-identities of degree 5 for the upper triangular matrices of order 2 and compute the minimal degree of an A-identity for such algebras of order 3 and 4. / Doutorado / Algebra / Doutor em Matemática
4

Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann / Polynomial identities in matrix algebras over the Grassmann algebra

Mello, Thiago Castilho de, 1984- 19 August 2018 (has links)
Orientador: Plamen Emilov Kochloukov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T21:39:41Z (GMT). No. of bitstreams: 1 Mello_ThiagoCastilhode_D.pdf: 1364753 bytes, checksum: 66955ce4a4c6b84e5c6dcc1a414f3f24 (MD5) Previous issue date: 2012 / Resumo: Nesta tese estudamos a álgebra genérica de M1;1 em dois geradores sobre um corpo infinito de característica diferente de 2. Descrevemos o centro desta álgebra e provamos que este é a soma direta do corpo com um ideal nilpotente da álgebra. Como consequência mostramos que este centro contém elementos não escalares, respondendo a uma pergunta feita por Berele. Em característica zero, estudamos também as identidades polinomiais de tal álgebra genérica e exibimos uma base finita para seu T-ideal, utilizando a descrição do seu centro e os resultados de Popov sobre as identidades de M1;1 em característica zero. Segue que tal base é formada pelos polin^omios [x1; x2][x3; x4][x5; x6], [[x1; x2][x3; x4]; x5] e s4, a identidade polinomial standard de grau 4. Por fim, utilizando ideias e resultados de Nikolaev sobre as identidades em duas variáveis de M2(K) em característica zero, mostramos que todas as identidades polinomiais em duas variáveis de M1;1 são consequências das identidades [[x1; x2]2; x1] e [x1; x2]³ / Abstract: In this thesis, we study the generic algebra of M1;1 in two generators over an infinite field of characteristic different from 2. We describe the centre of this algebra and prove that this centre is a direct sum of the field and a nilpotent ideal of the algebra. As a consequence, we show that such centre contains nonscalar elements and thus we answer a question posed by Berele. In characteristic zero we also study the identities of this generic algebra and find a finite basis for its ideal of identities using the description of its centre and the results of Popov, about the identities of M1;1 in characteristic zero. It follows that such a basis is formed by the polynomials [x1; x2][x3; x4][x5; x6], [[x1; x2][x3; x4]; x5] and by s4, the standard identity of degree four. Finally, using ideas and results of Nikolaev about the identities in two variables of M2(K) in characteristic zero, we show that the polynomial identities in two variables of M1;1 follow from [[x1; x2]2; x1] and [x1; x2]³ / Doutorado / Matematica / Doutor em Matemática

Page generated in 0.3036 seconds