• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 35
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 101
  • 101
  • 33
  • 30
  • 17
  • 15
  • 12
  • 12
  • 12
  • 12
  • 12
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Automatic Tuning of Control Parameters for Single Speed Engines

Olsson, Johan January 2004 (has links)
In Scania’s single speed engines for industrial and marine use, the engine speed is controlled by a PI-controller. This controller is tuned independent of engine type and application. This brings certain disadvantages since the engines are used in a wide range of applications where the dynamics may differ. In this thesis, the possibility to tune the controller automatically for a specific engine installation has been investigated. The work shows that automatic tuning is possible. By performing an identification experiment on the engine, the parameters in a first order model describing the dynamics of the engine and the load aggregate are determined. The control parameters are then determined as functions of the model parameters. Measurements on a generator set show that the proposed method provides a controller which is able to follow changes in the reference value, and to compensate for load disturbances. / I Scania’s envarvsmotorer för industri- och marin-bruk regleras varvtalet av en PI-regulator. Denna regulator är inställd oberoende av motortyp och applikation. Detta medför vissa nackdelar då motorerna används i flera olika typer av applikationer där dynamiken kan variera. I detta arbete har det undersökts huruvida det är möjligt att automatiskt ställa in parametrarna i en PID-regulator för en enskild motorinstallation. Arbetet visar att automatisk inställning är möjlig. Genom att göra ett identifieringsexperiment på motorn bestäms parametrarna i en första ordningens modell som beskriver dynamiken för den aktuella konfigurationen av motor och belastande aggregat. Därefter bestäms regulatorparametrarna som funktion av modellparametrarna. Mätningar på ett generatoraggregat visar att man med hjälp av den föreslagna metoden erhåller en inställning av regulatorn som både klarar av att följa börvärdesförändringar och kompensera för laststörningar.
42

Study of driver models forside wind disturbances

Qiu, Jie January 2013 (has links)
As the development of highways, it is quite normal for buses running in a speed around 100km/h. When buses are running in a high speed, they may suffer from the influence of side wind disturbances at anytime. Sometimes, it may result in traffic accidents. Therefore, the study of bus stability under side wind disturbances becomes more and more important. Due to restrictions of real tests, computer simulation can be used to study this subject. The bus side wind response character is reflected through the driver’s manoeuvre , so open-loop analysis is hard to give a comprehensive evaluation of the side wind stability of the bus. Therefore, closed-loop analysis is studied in this thesis. An ADAMS bus model and a side wind force model are developed in this thesis, along with two driver models, the PID control model and the preview curvature model. The driver models are built in Simulink and co-simulation between ADAMS/View and Simulink is conducted. The results of co-simulation show that the two driver models can both control the bus from deviating from the desired course under side wind disturbances. The PID control model is simple and shows a very good control effect. The maximum lateral displacement of the bus by PID control model is just 0.0205m under maximum side wind load 1000N and 2500Nm when preview time is 1.2s, while it is 0.0702m by preview curvature model, however, it is difficult to determine the coefficients Kd, Kp, and Ki in the PID controller. The preview curvature model also shows a good control effect in terms of the maximum lateral displacement and yaw angle of the bus. Comparing these two models, the PID control model is more sensitive to deviations, with quicker response and larger steering input. The bus model system is stable under side wind disturbances. Through driver ’s proper steering manoeuvre, the bus is well controlled. The closed-loop analysis is a good method to study the bus stability under side wind disturbances.
43

Intelligent Wind Turbine Using Fuzzy PID Control

Hedlund, Richard, Timarson, Niklas January 2017 (has links)
This thesis demonstrates how small wind turbines can contributeto a greener planet by using wind energy to generateelectrical power. It compares the conventional PIDcontroller with the Fuzzy PID controller, implemented ina small wind turbine that was constructed using variousmachines. The concept of changing the gain parameters of the PIDcontroller with fuzzy logic, depending on the wind directionfor greater power generation, is explained and tested. This,with usage of a DC-motor that gets an output signal fromthe system which reads input values from an encoder anda wind vane. The construction included a powertrain inwhich a transmission, roller bearings and shafts were implementedin the yaw mechanism. The tests resulted in showing that the Fuzzy PID controllerperformed better, minimizing the error, when theerror between the wind turbine and the wind itself, wassmall. The power generation was also increased when utilizingthe Fuzzy PID controller. However, the PID controllerperformed similar to the Fuzzy PID controller whenexposed to larger errors. / Det här arbetet visar hur små vindkraftverk kan bidra tillen grönare planet genom att omvandla vindenergi till elektriskenergi. Det beskriver jämförelsen mellan den vanligtförekommande PID regulatorn och den suddiga PID regulatorn,implementerad i ett litet vindkraftverk som konstruerades med hjälp av flertalet maskiner. Konceptet att ändra på parametrarna i PID regulatorn med hjälp av suddig logik, beroende på vindriktningen, förklaras och testas med syfte att generera energi. Dettamed hjälp av en DC-motor som får utsignaler från systemet som läser insignaler från en encoder och en vindflöjt. Konstruktionen av rotatonsmekanismen innehöll implementation av en växel, kullager och axlar. Testresultaten visade att den suddiga PID regleringenvar bättre på att minimera felet, när felet mellan vindkraftverket och vinden var litet. Även vid generering av energi,visade det sig att den suddiga PID regleringen presterade bättre. Likväl presterade PID regulatorn på samma nivå som den suddiga, när felet var större.
44

Autonomous Robotic Automation Systemwith Vision Feedback

Rosino, Jeffery 01 January 2004 (has links)
In this thesis, a full design, development and application of an autonomous robotic automation system using vision feedback is performed. To realize this system, a cylindrical manipulator configuration is implemented, using a personal computer (PC) based PID controller from National Instruments. Full autonomous control will be achieved via a programmable human machine interface (HMI) developed on a PC using Borland C++ Builder. The vision feedback position control is accomplished using an ordinary "off-the-shelf" web camera. The manuscript is organized as follows; After Chapter 1, an introduction to automation history and its role in the manufacturing industry, Chapter 2 discusses and outlines the development of the robotic kinematics and dynamics of the system. A control strategy is also developed and simulated in this chapter. Chapter 3 discusses color image processing and shows the development of the algorithm used for the vision feedback position control. Chapter 4 outlines the system development, which includes the hardware and software. Chapter 5 concludes with a summary, and improvement section. The process used as a basis for the design and development of this thesis of this thesis topic was constructed from a manual capacitor orientation check test station. A more detailed definition and objective is presented in the introduction.
45

Modeling, Development and Experimental Validation of different Control Strategies for a Double-Damper Semi-Active Suspension System

Shrikanthan, Sudarshan 16 February 2024 (has links)
Vehicle Suspension is an important sub-system in an automobile as it is directly related to the subjective qualities of ride comfort that the passengers perceive. A vehicle suspension works by insulating the driver and the passengers from the irregularities of the road. Moreover, a suspension is required to ensure the tires properly contact the surface for adequate traction. This study aims to analyze whether a damper that is made out of two individual dampers joined together can be used to provide better ride comfort and better road handling with appropriate control strategies and if this damper can work more effectively than a single semi-active damper / Master of Science / A car's suspension is crucial for a smooth ride and passenger comfort, as it absorbs bumps and keeps your tires in contact with the road. This research looks at a new type of shock absorber made of two connected parts to see if it improves ride comfort and handling compared to the traditional single shock absorber. We'll explore how this new design, along with smart control methods, might make driver and passenger comfort better.
46

Visual Feedback Stabilisation of a Cart Inverted Pendulum A

Ingram, Stephen D. January 2016 (has links)
Vision-based object stabilisation is an exciting and challenging area of research, and is one that promises great technical advancements in the field of computer vision. As humans, we are capable of a tremendous array of skilful interactions, particularly when balancing unstable objects that have complex, non-linear dynamics. These complex dynamics impose a difficult control problem, since the object must be stabilised through collaboration between applied forces and vision-based feedback. To coordinate our actions and facilitate delivery of precise amounts of muscle torque, we primarily use our eyes to provide feedback in a closed-loop control scheme. This ability to control an inherently unstable object by vision-only feedback demonstrates an exceptionally high degree of voluntary motor skill. Despite the pervasiveness of vision-based stabilisation in humans and animals, relatively little is known about the neural strategies used to achieve this task. In the last few decades, with advancements in technology, we have tried to impart the skill of vision-based object stabilisation to machines, with varying degrees of success. Within the context of this research, we continue this pursuit by employing the classic Cart Inverted Pendulum; an inherently unstable, non-linear system to investigate dynamic object balancing by vision-only feedback. The Inverted Pendulum is considered to be one of the most fundamental benchmark systems in control theory; as a platform, it provides us with a strong, well established test bed for this research. We seek to discover what strategies are used to stabilise the Cart Inverted Pendulum, and to determine if these strategies can be deployed in Real-Time, using cost-effective solutions. The thesis confronts, and overcomes the problems imposed by low-bandwidth USB cameras; such as poor colour-balance, image noise and low frame rates etc., to successfully achieve vision-based stabilisation. The thesis presents a comprehensive vision-based control system that is capable of balancing an inverted pendulum with a resting oscillation of approximately ±1º. We employ a novel, segment-based location and tracking algorithm, which was found to have excellent noise immunity and enhanced robustness. We successfully demonstrate the resilience of the tracking and pose estimation algorithm against visual disturbances in Real-Time, and with minimal recovery delay. The algorithm was evaluated against peer reviewed research; in terms of processing time, amplitude of oscillation, measurement accuracy and resting oscillation. For each key performance indicator, our system was found to be superior in many cases to that found in the literature. The thesis also delivers a complete test software environment, where vision-based algorithms can be evaluated. This environment includes a flexible tracking model generator to allow customisation of visual markers used by the system. We conclude by successfully performing off-line optimization of our method by means of Artificial Neural Networks, to achieve a significant improvement in angle measurement accuracy. / Goodrich Engine Control Systems and Balfour Beatty Rail Technologies
47

A Variable Stiffness Robotic Arm Design Using Linear Actuated Compliant Parallel Guided Mechanism.

Hu, Ruiqi January 2017 (has links)
No description available.
48

DESIGNING A 4-DOF ARM MODEL AND CONTROLLER TO SIMULATE COMPLETION OF A FITTS TASK

Hepner, Gabriel A. 27 April 2018 (has links)
No description available.
49

Design and Fabrication of Intention Based Upper-Limb Exoskeleton

Sharma, Manoj Kumar 23 May 2016 (has links)
No description available.
50

Nonlinear Control of Magnetic Signatures

Niemoczynski, Bogdan January 2015 (has links)
Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant to represent domain rotation lag and a gain function to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and observing frequency effects. The plant model is used in a feedback controller and simulated for different materials as a proof of concept. / Electrical and Computer Engineering

Page generated in 0.0536 seconds