• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 174
  • 25
  • 15
  • 14
  • 9
  • 8
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 322
  • 99
  • 68
  • 47
  • 44
  • 42
  • 38
  • 33
  • 32
  • 32
  • 28
  • 22
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Stanovení stupně vtažení zinkové povrchové vrstvy do hrany součástky v závislosti na použité technologii výroby - laserové řezání, vysekávání / Determinantion of size penetration of the zinc surface layer to the edge of part in dependence on use technology of production - laser cutting, punching

Klazar, Martin January 2014 (has links)
The project, developed under the terms of engineering studies of the M-STG Manufacturing Technology branch, presents the analytical assessment of the cutting surface of the metal sheet by two most commonly used modern technologies of cutting, which is the laser beam division and the exact cutting. The evaluation of this area was mainly focused on the level of the penetration of the zinc surface layer in the area of the given cutting. With the help of modern methods of electron microscopy, these values of penetration were then estabilished for each technology. The analysis itself was preceded by literary studies of all individual parts participating in this experiment.
232

Understanding the Relationships between Ion Transport, Electrode Heterogeneity, and Li-Ion Cell Degradation Through Modeling and Experiment

Pouraghajansarhamami, Fezzeh 05 June 2020 (has links)
Electrode microstructure directly affects ion and electron transport and, in turn, has a strong correlation to battery performance. Understanding the separate yet complementary effects of ionic and electronic transport in cell behavior is a challenge. This work provides through a combination of experiments and modeling a better understanding of the relationship between three aspects of the cell: ion transport within the electrode, electrode uniformity, and cell degradation. The first part of this work compares two experimental methods that determine ion transport in terms of tortuosity, a dimensionless geometric factor. The polarization-interrupt and blocking-electrolyte methods measure effective diffusivity and conductivity, respectively. The tortuosity of several commercial-quality electrodes was measured using both methods, producing reasonable agreement between the two methods in most cases. Next, the effect of cell cycling on ionic and electronic transport of electrodes was investigated. Using the blocking electrolyte method, the tortuosity of electrode films at varying extents of cycling was determined. Variations in electronic resistivity were quantified by micro-scale measurements using a previously developed micro-four-line probe. The changes in tortuosity and electronic resistivity were investigated for a graphite anode and several cathode chemistries including LiCoO2, LiNixCoyMnzO2, LiFePO4, and blends of transition metal oxides. Clear evidence of changes in tortuosity and electronic resistivity was observed during cell formation and cycling. The magnitude of the changes strongly depended on the chemistry of electrodes and cycling conditions. The results indicate that, under normal cycling conditions, electronic resistivity increases while tortuosity unexpectedly decreases. However, accelerated cycling conditions (i.e. elevated temperature) can lead to both electronic resistivity and tortuosity increase. Finally, the interplay of electrode tortuosity heterogeneity and Li-plating was investigated. The Li-plating reaction was incorporated into a Newman-type model and validated using the voltage profile and capacity-loss data from experiments. The simulation result shows that a heterogeneous anode can cause non-uniform Li plating while cathode heterogeneity did not have a significant effect. The Li-plating profile across the thickness of the anode with cell cycling showed that Li tends to plate at the high tortuosity region near the separator. Unexpectedly, Li plating tends to shift to the current collector side upon a sufficient increase in porosity close to the separator. Simulated capacity loss vs. cycling data indicates that there is a feedback mechanism with cycling: as cycling continues the rate of Li plating for the high-tortuosity region decreases at the separator side and the other two regions will eventually catch up in terms of plating.
233

Distal Radius Fracture : – Treatment, Complications, and Risk Factors for Re-operation.

Pickett, Alexandra January 2020 (has links)
Introduction: Distal radius fractures (DRF’s) are one of the most common types of fractures,especially in elderly women. In the last decade, there has been a shift in the treatment methodemployed for DRF’s from the traditional non-operative to an operative method using plates andscrews even though there is no evidence to suggest that this method has superior outcomes. Aim: The primary objective of this study was to identify risk factors for complications and reoperationsin the treatment of DRF’s. Method: The study was designed as a retrospective cohort study. Patients treated for DRF’sbetween 2016-2017 were included through the Swedish Fracture Register and complementedwith the patients’ charts and classification of X-Ray Images from The Orthopedic Clinic at TheCentral Hospital in Karlstad. The risk for re-operation was valued through treatment methodsand fracture classification and presented as Odds Ratio. Result: Positive ulnar variance was correlated to having an increased risk for re-operation, OR4.8 (95% CI 1.7-13.8). Those who had volar comminution in their fracture had a greater risk forre-operation, OR 12.4 (95% CI 4.6-34.1, p<0.001), but also a greater risk for correctiveosteotomy, OR 12.6 (95% CI 1.4-113.9, p=0.024). Conclusion: Volar comminution and positive ulnar variance are associated with an increasedrisk for re-operation. However, the degree of the risk is difficult to measure due to the lowincidence of re-operations.
234

Distribution of Electrodeposited Copper on Patterned Substrates in the Presence of Additives: Effects of Periodic Reverse Current and Etching

Lindberg, Erik, Lindberg January 2018 (has links)
No description available.
235

Evaluation and optimization of quantitative analysis methods for Clostridium perfringens detection in broiler intestinal samples to use with necrotic enteritis challenge models

Briggs, Whitney 29 September 2020 (has links)
No description available.
236

Electromechanical interactions in lithium-ion batteries: Aging effects and analytical use / Elektromechanische Wechselwirkungen in Lithium-Ionen Batterien: Alterungseffekte und analytische Anwendungsmöglichkeiten

Bach, Tobias January 2017 (has links) (PDF)
In the first part of his work, the causes for the sudden degradation of useable capacity of lithium-ion cells have been studied by means of complementary methods such as computed tomography, Post-Mortem studies and electrochemical analyses. The results obtained point unanimously to heterogeneous aging as a key-factor for the sudden degradation of cell capacity, which in turn is triggered by differences in local compression. At high states of health, the capacity fade rate is moderate but some areas of the graphite electrode degrade faster than others. Still, the localized changes are hardly noticeable on cell level due to averaging effects. Lithium plating occurs first in unevenly compressed areas, creating patterns visible to the human eye. As lithium plating leads to rapid consumption of active lithium, a sudden drop in capacity is observed on cell level. Lithium plating appears to spread out from the initial areas over the whole graphite electrode, quickly consuming the remaining useful lithium and active graphite. It can be hypothesized that a self-amplifying circle of reciprocal acceleration of local lithium loss and material loss causes rapid local degradation. Battery cell designers can improve cycle life by homogeneous pressure distribution in the cell and using negative active materials that are resilient to elevated discharge potentials such as improved carbons or lithium titanate. Also, a sufficiently oversized negative electrode and suitable electrolyte additives can help to avoid lithium plating. When packs are designed, care must be taken not to exert local pressure on parts of cells and to avoid both very high and low states of charge. In the second part of this dissertation the resilience of cylindrical and pouchbag cells to shocks and different vibrations was investigated. Stresses inflicted by vibration and shock tests according to the widely recognized UN38.3 transport test were compared to a long-time test that exposed cells to a 186 days long ordeal of sine sweep vibrations with a profile based on real-world applications. All cells passed visual and electric inspection performed by TU München after the vibration tests. Only cylindrical cells subjected to long-term vibrations in axial direction showed an increase in impedance and a loss of capacity that could be recuperated in part. The detailed analyses presented in this thesis gave more details on the damages inflicted by vibrations and shocks and revealed drastic damages in some cases. In cylindrical cells, only movement in axial direction caused damage. Long term vibrations were found to be especially detrimental. No damage whatsoever could be detected for pouch cells, regardless of the test protocol and the direction of movement. The extreme resilience of pouchbag cells shows that the electrode stack of lithium-ion cells is resistant to vibrations, and that damages are caused by design imperfections that can be improved at low cost. The findings of this work, and the general state of research show that it is most crucial to control the lithiation and thus potential of the graphite electrode. In the last part of this work, a new, direct method for charge estimation based on changing transmission is presented. A correlation between transmission of short ultrasonic pulses and state of charge is found. This new technology allows direct measurement of the state of charge. The method is demonstrated for batteries with different positive active materials, showing its versatility. As the observed changes can be traced to the lithiation of graphite, it can be determined without a reference electrode. Already at this early stage of development, the found correlations allow estimation of state of charge. The present hysteresis in the signal height of the slow wave, which is unneglectable especially during discharging at higher currents, will be subject to further investigation. The observed effects can be explained by effects on different length scales. Biot’s theory explains the second wave’s slowness based on the active material particles size in the range of 0.01 mm and electrolyte-filled pores. Lithiation of graphite changes the porosity of the electrode and thereby the velocity and wavelength of the impulse. When the wavelength approaches the length scale of the layers, 0.1 mm, scattering effects dampen the transmitted signal. Finally, the wavelength of the pulse should be shorter than the transducers diameter to obtain a homogeneous wave front. To conclude, the new method allows the control of each individual cell in a pack independent from the electrical connections of the cells. As the method shows great promise, further studies regarding factors such as long-term behavior, temperature and current rates should be conducted. In this thesis hysteresis was observed and a deeper understanding of the reasons behind it may allow further improvements of measurement precision. / Im ersten Teil dieser Doktorarbeit wurden die Ursachen des plötzlichen Kapazitätseinbruchs von Lithium-Ionen Zellen untersucht. Die mittels sich ergänzender Methoden wie Röntgentomographie, Post-Mortem Untersuchungen und elektrochemischer Analysen gewonnenen Ergebnisse weisen darauf hin, dass heterogene Alterungseffekte eine Schlüsselrolle für den beschleunigten Kapazitätsverlust spielen. Die beobachteten Ungleichmäßigkeiten auf gealterten Elektroden konnten wiederum auf Kompressionsunterschiede zurückgeführt werden. Im frühen Alterungsstadium war zwar nur ein moderater Kapazitätsverlust zu verzeichnen, einige Bereiche der Graphitelektrode altern jedoch schneller als andere. Diese lokalen Alterungseffekte sind auf Zellebene aufgrund von Mittelungseffekten zunächst schwer nachweisbar, sobald jedoch in Bereichen abweichender Kompression Lithiumplating auftritt, entstehen Muster welche nach Öffnen der Zelle gut zu erkennen sind. Inaktives Lithium, dicke Passivschichten sowie erhöhte Mengen an abgelagertem Mangan und anderen Metallen die aus dem positiven Aktivmaterial herausgewaschen wurden, konnten in geschädigten Bereichen der Zellen B und C, welche direkt beim Einsetzen beziehungsweise 150 Zyklen später geöffnet wurden, nachgewiesen werden. Da Lithiumplating zu raschem Verbrauch von aktivem Lithium führt, kann ein plötzlicher Einbruch der Zellkapazität beobachtet werden. Das Lithiumplating scheint sich von den geschädigten Bereichen über die gesamte Elektrode auszubreiten, wobei rasch das verbleibende aktive Lithium und teilweise auch das negative Aktivmaterial verbraucht wird. Daher wird die Hypothese aufgestellt, dass durch lokales Lithiumplating ein sich selbst verstärkender Kreislauf in Gang gesetzt wird, wobei sich lokaler Lithium- und Aktivmaterialverlust gegenseitig beschleunigen. Im zweiten Teil der Arbeit wurde die Widerstandsfähigkeit von zylindrischen und Pouchbagzellen gegenüber Schocks und Vibrationen untersucht. Belastungen durch Vibrationen und Schocks gemäß des weitläufig anerkannten Transporttests UN38.3 wurden mit 186 Tage dauernden Langzeittests verglichen. Alle Zellen bestanden die visuellen und elektrischen Überprüfungen die an der TU München nach Durchführung der Vibrationstests durchgeführt wurden. Nur die zylindrischen Zellen zeigten einen Anstieg des Innenwiderstands sowie einen weitgehend reversiblen Kapazitätsverlust. Die in dieser Arbeit vorgestellte tiefergehenden Analysen gaben ein detaillierteres Bild der beobachteten Effekte auf und zeigten teilweise schwere versteckte Schäden auf, wobei ausschließlich in axialer Richtung belastete Rundzellen Schäden aufwiesen. Langzeitvibrationen führten zu besonders schweren Schadensbildern. An den untersuchten Pouchzellen konnte keinerlei Schädigung durch die Vibration festgestellt werden. Die Widerstandsfähigkeit der Pouchzellen zeigt, dass der Elektrodenstapel, der die Grundlage jeder Lithium-Ionen Zelle bildet, äußerst vibrationsstabil ist und auftretende Schäden auf ungenügendes Zelldesign zurückzuführen sind. Die hier vorgestellten Ergebnisse und der Stand der Wissenschaft zeigen die Bedeutung des Lithiierungsgrad der Graphitelektrode für die Alterung auf. Im letzten Teil der Arbeit wurde daher eine neue Methode zur Ladezustandsbestimmung mittels Ultraschall vorgestellt. Die beobachteten Amplituden- und Laufzeitänderungen erlauben die direkte Bestimmung des Ladezustands von Lithium-Ionen Zellen und die Anwendbarkeit konnte an Zellen mit verschiedenen positiven Aktivmaterialien gezeigt werden. Die beobachteten Effekte können auf Vorgänge auf verschiedenen Längenskalen zurückgeführt werden. Biots Theorie bietet eine Erklärung der geringen Geschwindigkeit der zweiten Welle aufgrund der Ausbreitungsmodi der Schallwellen im porösen, elektrolytgefüllten Aktivmaterial. Die im Vergleich zur Wellenlänge kleine Längenskala der Aktivpartikel und der elektrolytgefüllten Poren von 0,01 mm führt hierbei dazu, dass sich das Material als Effektivmedium verhält. Durch die Lithiierung der Graphitpartikel ändern sich Eigenschaften und Porosität der Elektrode. Insbesondere die Porositätsänderung kann laut Biots Theorie die Geschwindigkeit und somit die Wellenlänge der zweiten Welle wesentlich verändern. Wenn die Wellenlänge auf die Größenordnung der Schichtdicken der Zelle, 0,1 mm, reduziert wird, treten Streuungseffekte auf, die die transmittierte Welle abschwächen. Schlussendlich muss der Durchmesser der eingesetzten Schallwandler größer als die Wellenlänge der Pulse sein um ein homogenes Schallfeld zu erzeugen. Da der Einsatz von Ultraschallpulsen vielversprechend erscheint, sollten in weiteren Studien Faktoren wie Langzeitverhalten, Temperatur- und Rateneinflüsse untersucht werden. In dieser Arbeit wurde weiterhin Hysterese beobachtet deren tieferes Verständnis nicht nur die Ladezustandsbestimmung, sondern auch das Verständnis der dynamischen Prozesse in Lithium-Ionen Zellen verbessern könnte.
237

The Microstructure, Tensile Deformation, Cyclic Fatigue and Final Fracture Behavior of Alloy Steel 4140 for use in CNG (Compressed Natural Gas) and Hydrogen Pressure Vessels

Balogun, Nurudeen 13 December 2010 (has links)
No description available.
238

Methane and Solid Carbon Based Solid Oxide Fuel Cells

Chien, Chang-Yin 07 April 2011 (has links)
No description available.
239

Fabrication and Characterization of DNA Templated Electronic Nanomaterials and Their Directed Placement by Self-Assembly of Block Copolymers

Ranasinghe Weerakkodige, Dulashani Ruwanthika 01 August 2022 (has links)
Bottom-up self-assembly has the potential to fabricate nanostructures with advanced electrical features. DNA templates have been used to enable such self-assembling methods due to their versatility and compatibility with various nanomaterials. This dissertation describes research to advance several different steps of biotemplated nanofabrication, from DNA assembly to characterization. I assembled different nanomaterials including surfactant-coated Au nanorods, DNA-linked Au nanorods and Pd nanoparticles on DNA nanotubes ~10 micrometer long, and on ~400 nm long bar-shaped DNA origami templates. I optimized seeding by changing the surfactant and magnesium ion concentrations in the seeding solution. After successful seeding, I performed electroless plating on those nanostructures to fabricate continuous nanowires. Using the four-point probe technique, I performed resistivity measurements for Au nanowires on DNA nanotubes and obtained values between 9.3 x 10-6 and 1.2 x 10-3 ohm meter. Finally, I demonstrated the directed placement of DNA origami using block copolymer self-assembly. I created a gold nanodot array using block copolymer patterning and metal evaporation followed by lift-off. Then, I used different ligand groups and DNA hybridization to attach DNA origami to the nanodots. The DNA hybridization approach showed greater DNA attachment to Au nanodots than localization by electrostatic interaction. These results represent vital progress in understanding DNA-templated components, nanomaterials, and block copolymer nanolithography. The work in this dissertation shows potential for creating DNA-templated nanodevices and their placement in an ordered array in future nanoelectronics. Each of the described materials and techniques further has potential for addressing the need for increased complexity and integration for future applications.
240

Revealing Ribs : Transforming fabric by the use of form: Patterns that shift and morph as the rib-knitted textiles encloses three-dimensional forms.

Börresen, Hedda January 2023 (has links)
"Revealing Ribs": a project exploring the intersection between ribbed textiles and three-dimensional forms. "Revealing Ribs" is a project that delves into ribbed textiles and their potential to contain and transform patterns when they interact with three-dimensional forms. The project aims to unravel the intricate dynamics between ribbed textiles and three-dimensional forms, enabling a deeper understanding of their synergistic potential. By pushing the boundaries of traditional textile design, "Revealing Ribs" offers an opportunity to expand the horizons of incorporating surface patterns into knitted textiles for interior applications. It opens new creative possibilities and allows textile designers to explore the symbiotic relationship between fabric and form. This project has proposed three ribbed textiles through careful experimentation and craftsmanship, each enclosing different three-dimensional objects. By exploring how these materials can contain patterns that undergo captivating transformations when intertwined with various forms, "Revealing Ribs" shows the interplay between textiles and form. The significance of this project lies in its potential to expand the use of ribbed textiles as a medium for dynamic pattern expression in interior design contexts.

Page generated in 0.036 seconds