• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 10
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Impedance Biochips for Disturbing–Free Cell Counting

Kiani, Mahdi 29 May 2024 (has links)
Biochip technology is highly effective method that allows monitoring of biomaterials e.g., yeast and bacteria at a time in computerized automatic operations. Miniaturized nanostructure p-n junction test sites, which are arranged on a solid substrate, are proposed to sense and count the biomaterials. This PhD thesis reports on the impedance of p-n junction-based Si biochips with gold ring top electrodes and unstructured gold bottom electrodes, which allows for counting target biomaterial in a liquid-filled ring top electrode region. The phosphor and boron implanted biochips prepared in dissimilar annealing and doping conditions have been considered and three different types of top electrodes designed and tested to check the influence of the properties of the top electrode on the biochips to achieve more convenient samples for bio sensing technology. The systematic experiments on p-n junction-based Si biochips fabricated by two different sets of implantation parameters (i.e., biochips PS5 and BS5) are studied and the comparable significant change of impedance characteristics in the biochips in dependence on the number of bacteria suspensions, i.e., Lysinibacillus sphaericus JG-A12, in Deionized water at optical density at 600 nm from OD600 = 4–16 in the electrode ring region is demonstrated. The number of biomaterials and the microscopic images can be linked to the impedance changes of the biochip. The electrical equivalent circuit models for the devices have been proposed by using characterized frequency dependent capacitance and conductance of biochips. While the Nyquist spectrum of the biochips are not compromise on perfect semicircle, combination of constant phase elements with resistor in parallel fashion and series inductor and resistor have been utilized to model the impedance of the biochips. Corresponding parameters i.e., capacitors, resistors and inductors have been extracted from the modeling results and the changes in their values by adding the biomaterials obtained. As the result, the linear relation between the numbers of the biomaterial and the impedance of the biochips has been showed. Furthermore, Deionized water and glucose with yeast (Saccharomyces cerevisiae) at optical density OD600 ranging from 4 to 16 has been put in the ring electrode region of impedance biochips and impedance has been measured in dependence on the added volume (20, 21, 22, 23, 24, 25 µL). Modeled impedance of the biochip reveals a linear relationship between the impedance model parameters and yeast concentration. Presented biochips allow for continuous impedance measurements without interrupting the cultivation of the yeast. A multiparameter fit of the impedance model parameters allows to determine the concentration of yeast cy in the range from cy = 3.3x10^7 to cy = 17x10^7 cells/mL. This work shows that independent on the liquid, DI water or glucose, the change of the impedance model parameters with increasing added volume of the liquid is clearly distinguishable from the change of impedance model parameters with increasing concentration of added yeast in the ring electrode region of the impedance biochips. We also counted bacterial cells of E. coli strain K12 in several-microliter DI water or in several-microliter PBS at the low optical density (OD) range (OD = 0.05–1.08) in contact with the surface of Si-based impedance biochips with ring electrodes by impedance measurements. The multiparameter fit of the impedance data allowed calibration of the impedance data with the concentration cb of the E. coli cells in the range of cb = 0.06 to 1.26 × 10^9 cells/mL. The results showed that for E. coli in DI water and in PBS, the modelled impedance parameters depend linearly on the concentration of cells in the range of cb = 0.06 to 1.26 × 10^9 cells/mL, whereas the OD, which was independently measured with a spectrophotometer, was only linearly dependent on the concentration of the E. coli cells in the range of cb = 0.06 to 0.50 × 10^9 cells/mL. with the help of the newly developed ring electrode structure, the modeled capacitance and resistance parameters of the electrical equivalent circuit describing the p-n junction-based biochips depend linearly on the number of bacteria in the ring top electrode region, which successfully proves the potential performance of p-n junction-based Si biochips in observing the bacterial suspension. The proposed p-n junction-based biochips reveal perspective applications in medicine and biology for diagnosis, monitoring, management, and treatment of diseases.
12

Návrh fotovoltaického systému rodinného domu / Design of photovoltaic system for a family house

Darebný, Tomáš January 2017 (has links)
Basic knowledge of photovoltaic energy transformation, devices and materials, used in photovoltaic are summarized in this master's thesis. The main goal of this thesis is orientation in the photovoltaic systems used these days and explain advantages and disadvantages of these systems during the design phase.
13

Počítačové modelování MOSFET tranzistoru / Computer modeling of MOSFET transistor

Major, Jan January 2011 (has links)
Work is focused on computer modeling of PN junction and MOSFET transistor in the program COMSOL Multiphysics and in program TiberCAD. The text is discussed on the drift and diffusion in semiconductors. Also shown is a method of modeling the PN junction and MOSFET transistor in the programs and compare models.
14

Vliv magnetického pole na vlastnosti fotovoltaických článků / Influence of magnetic field on photovoltaic solar cell

Kadlec, Michal January 2013 (has links)
This thesis describes the issue of PN junction of photovoltaic cells, photovoltaic effect physics, basic materials used in photovoltaic and their properties, important for the area of photovoltaic. It deals with the problems of magnetism focused on electromagnetic fields. Experimental facility for measuring the influence of magnetic field on the solar cells through the Helmholtz coils was constructed. This work also dealing with the influence of magnetic radiation on photovoltaic cells and the influence of electromagnetic waves on the volt-ampere characteristics of the photovoltaic cell.
15

Polovodičové struktury, metoda nábojového sběru / Semiconductors structures , charge collection method

Golda, Martin January 2014 (has links)
This thesis treats about semiconducting silicon structures. It describes the characteristics of the element and creation of P and N type of semiconductor and discusses about different types of faults in the crystal lattice. It deals with the description of methods for monitoring faults in semiconductor ie. determining the properties of semiconductors via EBIC, EBIV and CC methods, which are used for analysis of semiconductor devices and materials. Determining the properties of silicon components is being done by generation of charge carriers in the sample loaded in chamber of the scanning electron microscope by high energy electrons. Bellow the sample surface is being generated an electric charge which is being collected by probes. Using this data obtained by EBIC and CC were evaluated diffusion length and lifetime of electrons.
16

Měření kapacity vysokonapěťových přechodů PN / Capacitance measurement of high-voltage PN junctions

Derishev, Anton January 2015 (has links)
The work deals with the capacitance measurement of high-voltage PN junctions. The work is divided into theoretical and practical parts. The theoretical part presents insight into the fundamental properties of PN junctions and methods for measuring of the capacitance of PN junctions, primarily by C-V measurement. In the practical part, several kinds of measuring circuits are introduced and a suitable method of measurement is found. The calculations of basic parameters - the width of the base and resistivity are presented and discussed. The results were compared with the values obtained by calculation from the technological parameters of the junction.
17

Diagnostika PN přechodu křemíkových vysokonapěťových usměrňovacích diod pomocí šumu mikroplazmatu / Microplasma Noise as a Diagnostic Tool for PN Junctions of High-Voltage Rectifier Diodes

Raška, Michal January 2009 (has links)
The doctoral thesis deals with diagnostics of local defects in PN junctions and brings new information about microplasma noise behaviour and its usage for the temperature changes detection inside PN junctions. Defects in PN junctions are the source of microplasma noise. There were deviations observed in microplasma noise from the common known rectangle shape pulses during the measurements. These deviations were correlated with the temperature change directly in the defect area and in the defect area surroundings. Generation and recombination coefficients are commonly thought to be constant. However, these coefficients were observed to be not stable with time and this effect is explained in this work. The doctoral thesis then focuses on the PN junction parameters determination in the case when it is not possible to define unambiguously whether it is abrupt or linearly graded PN junction. The most significant parameters which are to be determined are barrier capacity, diffusion voltage and depleted area width in dependence on the voltage. The correlation between local avalanche discharge in PN junction and negative differential resistance appearance on VA characteristics of reverse-biased diode was qualitatively verified. The last important point in the work is computer modelling of temperature behaviour in the defect area and its surroundings during local avalanche breakdown. Thus the method of real diodes heating area parameters determination was introduced.
18

Diagnostika polovodičových materiálů metodou EBIC / Diagnostic of semiconductor materials by EBIC method

Davidová, Lenka January 2017 (has links)
Master´s thesis is focused on diagnostics of semiconductor materials by EBIC method (measuring of currents induced beam), determination of the lifetime of minority carriers, or their diffusion length. The theoretical part is aimed at the principle of scanning electron microscopy, the characteristic properties of the microscope and the signals generated by the interaction of the primary electron beam with the sample. The thesis describes a structure of semiconducting silicon, band models, types of lattice defects and doped of semiconductor structures. After that it is described the theory of calculation of the diffusion length of minority carriers in semiconductors of type N and P. The aim of the experiment part of the thesis is to measure the properties of the semiconductor structure by EBIC and determination of diffusion length and lifetime of minority charge carriers based on the measured data The aim of the experiment part of the thesis is to measure the properties of the semiconductor structure by EBIC and determination of diffusion length and lifetime of minority charge carriers on the basis of the measured data.
19

Elektronen-Holographische Tomographie zur 3D-Abbildung von elektrostatischen Potentialen in Nanostrukturen / Electron Holographic Tomography for the 3D Mapping of Electrostatic Potentials in Nano-Structures

Wolf, Daniel 14 February 2011 (has links) (PDF)
Die Aufklärung der grundlegenden Struktur-Eigenschaft-Beziehung von Materialen auf der (Sub-)Nanometerskala benötigt eine leistungsfähige Transmissionselektronenmikroskopie. Dabei spielen insbesondere die durch die Nanostruktur hervorgerufenen intrinsischen elektrischen und magnetischen Feldverteilungen eine entscheidende Rolle. Die Elektronen-Holographische Tomographie (EHT), d.h. die Kombination von off-axis Elektronenholographie (EH) und Elektronentomographie (ET), bietet einen einzigartigen Zugang zu dieser Information, weil sie die quantitative 3D-Abbildung elektrostatischer Potentiale und magnetostatischer Vektorfelder bei einer Auflösung von wenigen (5-10) Nanometern ermöglicht. Für die Rekonstruktion des 3D-Potentials erfolgt zunächst die Aufzeichnung einer Kippserie von Hologrammen im Elektronenmikroskop. Durch die anschließende Rekonstruktion der Objektwelle aus jedem Hologramm liegt eine Amplituden- und eine Phasenkippserie vor. Die Phasenkippserie wird schließlich zur tomographischen 3D-Rekonstruktion des elektrostatischen Potentials verwendet. Im Rahmen dieser Arbeit wurde die EHT von einer manuell aufwendigen zu einer weitestgehend automatisierten Methode entwickelt. Die Automatisierung beinhaltet die Entwicklung des ersten Softwarepaketes zur computergestützten Aufzeichnung einer holographischen Kippserie (THOMAS). Verglichen mit rein manueller Vorgehensweise verkürzt sich mit THOMAS die Dauer für die Aufnahme einer holographischen Kippserie, bestehend aus Objekt- und Leerhologrammen, auf weniger als ein Drittel. Mittlerweile beträgt die Aufnahmezeit im Mittel etwa 2-3 Stunden. Auch die holographische Rekonstruktion und zugehörige Operationen zur Entfernung von Artefakten in den Phasenbildern ist durch entsprechende Prozeduren, welche für eine gesamte Kippserie in einem Schritt anwendbar sind, automatisiert. Zudem ermöglichen erst spezielle selbstentwickelte Ausrichtungsmethoden die exakte Verschiebungskorrektur von Kippserien der hier untersuchten stabförmigen Objekte (Nanodrähte, FIB-präparierte Nadeln). Für die tomographische Rekonstruktion wurde in dieser Arbeit die Simultane Iterative Rekonstruktionstechnik (SIRT) zur W-SIRT weiterentwickelt. In der W-SIRT wird statt einer Einfachen eine Gewichtete Rückprojektion bei jeder Iteration verwendet, was eine bessere Konvergenz der W-SIRT gegenüber der SIRT zur Folge hat. Wie in anderen ET-Techniken auch, ist in der EHT für die Rekonstruktion des dreidimensionalen Tomogramms meist nur aus Projektionen innerhalb eines begrenzten Winkelbereichs möglich. Dies führt in den Tomogrammen zu einem sogenannten Missing Wedge, welcher neben dem Verlust von Au ösung auch Artefakte verursacht. Daher wird eine Methode vorgestellt, wie sich das Problem des Missing Wedge bei geeigneten Objekten durch Ausnutzung von Symmetrien entschärfen lässt. Das mittels EHT rekonstruierte 3D-Potential gibt Aufschluss über äußere (Morphologie) und innere Objektstruktur, sowie über das Mittlere Innere Potential (MIP) des Nanoobjektes. Dies wird am Beispiel von epitaktisch gewachsenen Nanodrähten (nanowires, NWs) aus GaAs und AlGaAs demonstriert. Anhand entsprechender Isopotentialflächen im 3D-Potential lässt sich die 3D-Morphologie studieren: Die Facetten an der Oberfläche der NWs erlauben Rückschlüsse über die dreidimensionale kristalline Struktur. Des Weiteren zeigt das rekonstruierte 3D-Potential eines AlGaAs/GaAs-Nanodrahtes deutlich dessen Kern/Schale-Struktur, da sich GaAs-Kern und AlGaAs-Schale bezüglich des MIP um 0.61 V unterscheiden. Im Falle dotierter Halbleiterstrukturen mit pn-Übergang (z.B. Transistoren) bietet die mittels EHT rekonstruierte Potentialverteilung auch Zugang zur Diffusionsspannung am pn-Übergang. Diese Größe kann ohne Projektions- und Oberflächeneffekte (dead layer) im Innern der Probe gemessen und in 3D analysiert werden. Für drei nadelförmig mittels FIB präparierte Proben (Nadeln) werden die Diffusionsspannungen bestimmt: Die Messungen ergeben für zwei Silizium-Nadeln jeweils 1.0 V und 0.5 V, sowie für eine Germanium-Nadel 0.4 V. Im Falle der GaAs- und AlGaAs-Nanodrähte reduziert der Missing Wedge die Genauigkeit der mittels EHT gewonnenen 3D-Potentiale merklich, insbesondere bezüglich der MIP-Bestimmung. Dagegen stimmen die Potentiale der Germanium und Silizium-Nadeln exzellent mit theoretischen Werten überein, wenn der Missing Wedge durch Ausnutzung der Objektsymmetrie behoben wird. / Revealing the essential structure-property relation of materials on a (sub-)nanometer scale requires a powerful Transmission Electron Microscopy (TEM). In this context, the intrinsic electrostatic and magnetic fields, which are related to the materials nano structure, play a crucial role. Electron-holographic tomography (EHT), that is, the combination of off-axis electron holography (EH) with electron tomography (ET), provides an unique access to this information, because it allows the quantitative 3D mapping of electrostatic potentials and magnetostatic vector fields with a resolution of a few (5-10) nanometers. The reconstruction of the 3D potential starts with the acquisition of a hologram tilt series in the electron microscope. The subsequent reconstruction of the electron object wave from each hologram yields a tilt series in both amplitude and phase images. Finally, the phase tilt series is used for the tomographic reconstruction of the 3D potential. In this work, EHT has been developed from a manual and time-consuming approach to a widely automated method. The automation includes the development of the first software package for computer-controlled acquisition of holographic tilt series (THOMAS), a prerequisite for efficient data collection. Using THOMAS, the acquisition time for a holographic tilt series, consisting of object and reference holograms, is reduced by more than a factor of three, compared to the previous, completely manual approaches. Meanwhile, the acquisition takes 2-3 hours on average. In addition, the holographic reconstruction and corresponding methods for removal of artefacts in the phase images have been automated, now including one-step procedures for complete tilt series. Furthermore, specific self-developed alignment routines facilitate the precise correction of displacements within the tilt series of the rod-shaped samples, which are investigated here (e.g. nanowires, FIB needles). For tomographic reconstruction, a W-SIRT algorithm based on a standard simultaneous iterative reconstruction technique (SIRT) has been developed. Within the W-SIRT, a weighted back-projection instead of a simple back-projection is used. This yields a better convergence of the W-SIRT compared to the SIRT. In most cases in EHT (likewise in other ET techniques), the reconstruction of the three-dimensional tomogram is only feasible from projections covering a limited tilt range. This leads to a so-called missing wedge in the tomogram, which causes not only a lower resolution but also artefacts. Therefore, a method is presented, how to solve the missing wedge problem for suitable objects by exploiting symmetries. The 3D potential offers the outer (morphology) and inner structure, as well as the mean inner potential (MIP) of the nano object. This is shown by means of EHT on epitaxially grown nanowires (NWs) of GaAs and AlGaAs. The 3D morphology is studied using the corresponding iso-surfaces of the 3D potential: The facets on the nanowires surface allow conclusions about the crystalline structure. Moreover, the reconstructed 3D potential of a AlGaAs/GaAs NW clearly shows its core/shell structure due to the MIP difference between GaAs and AlGaAs of 0.61 V. In case of doped semiconductor structures with pn-junctions (e.g. transistors) the potential distribution, reconstructed by EHT, also provides access to the built-in voltage across the pn-junction. The built-in voltage can be analyzed in 3D and measured without projection and surface effects (e.g. dead layers) within the sample. The measurements in three needle-shaped specimens, prepared by FIB, yield for two silicon needles 1.0 V and 0.5 V, and for a germanium needle 0.4 V. In case of the GaAs and AlGaAs nanowires the missing wedge reduces the accuracy of the reconstructed 3D potentials significantly, in particular in terms of MIP determination. However, the potentials of the silicon and germanium needles are in excellent agreement with theoretical values, when the object symmetry is exploited to fill-up the missing wedge.
20

Lokální optické a elektrické charakteristiky optoelektronických součástek / Local optical and electrical characteristics of optoelectronic devices

Škarvada, Pavel January 2012 (has links)
Solar energy conversion, miniaturization of semiconductor devices and associated lifetime, reliability and efficiency of devices are the basic premise of this work. This work is focused on the study of optoelectronic devices especially solar cells and its nondestructive diagnostic. Solar cells are advantageous for study mainly because the pn junction is located near the surface and contains a lot of inhomogeneities. It has been difficult until recently to investigate their local physical (electrical and optical) parameters due to the size of inhomogeneities. Behavior of inhomogeneities can be well understood with knowledge of its local properties. Establishment of measurement workplace, that satisfies requirements for measurement of local emission and optically induced current measurement, allows us detection and localization of inhomogeneities with spatial resolution more or less 100 nm. The core of thesis is characterization of imperfection using nondestructive techniques in the macroscopic region but primarily in microscopic region using scanning probe microscopy. Integral parts of the work are characterization techniques for photoelectrical devices, microscopic techniques and data processing. Scanning near-field optical microscope is used for the purpose of microscopic characterization such as topography, local optical, photoelectrical and electrooptical properties of structures in high spatial resolution. Locally induced current technique, current voltage characteristics, emission from reversed bias pn junction measurement including its thermal dependence are used for samples investigation in macroscopical region. It is possible to localize defects and structure inhomogeneity using mentioned techniques. Localised defects are consequently analyzed for composition and measured using electron microscopy. Specific outputs of work are classification of photoelectric devices defects and specification of nondestructive characterization techniques used for defect detection. Experimental characterization techniques are described together with defects measurement procedures. The key output is the catalog of serious defects which was detected. Particular defects of samples are shown including describe of its properties and physical meaning.

Page generated in 0.0815 seconds