• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 414
  • 178
  • 47
  • 40
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 8
  • 7
  • 7
  • Tagged with
  • 868
  • 158
  • 156
  • 125
  • 118
  • 113
  • 80
  • 65
  • 63
  • 54
  • 53
  • 48
  • 47
  • 46
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Biorthogonal Polynomials

Webb, Grayson January 2017 (has links)
In this thesis we present some fundamental results regarding orthogonal polynomials and biorthogonal polynomials, the latter defined as in the article "Cauchy Biorthogonal Polynomials", authored by Bertola, Gekhtman, and Szmigielski. We show that total positivity of the kernel can be weakened and how this implies that interlacement for biorthogonal polynomials holds in general. A counterexample is provided showing that in general there does not exist a four-term recurrence relation such as the one found for the Cauchy kernel. As a direct consequence we show that biorthogonal polynomial sequences cannot be considered orthogonal polynomial sequences by an appropriate choice of orthogonality measure. Furthermore, we motivate a conjecture stating that the more general form of interlacement that exists for orthogonal polynomials also exists for biorthogonal polynomials. We end with suggesting some further work that could be of interest.
332

On Random Polynomials Spanned by OPUC

Aljubran, Hanan 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We consider the behavior of zeros of random polynomials of the from \begin{equation*} P_{n,m}(z) := \eta_0\varphi_m^{(m)}(z) + \eta_1 \varphi_{m+1}^{(m)}(z) + \cdots + \eta_n \varphi_{n+m}^{(m)}(z) \end{equation*} as \( n\to\infty \), where \( m \) is a non-negative integer (most of the work deal with the case \( m =0 \) ), \( \{\eta_n\}_{n=0}^\infty \) is a sequence of i.i.d. Gaussian random variables, and \( \{\varphi_n(z)\}_{n=0}^\infty \) is a sequence of orthonormal polynomials on the unit circle \( \mathbb T \) for some Borel measure \( \mu \) on \( \mathbb T \) with infinitely many points in its support. Most of the work is done by manipulating the density function for the expected number of zeros of a random polynomial, which we call the intensity function.
333

Тригонометрические и алгебраические полиномы с несколькими фиксированными старшими гармониками, наименее уклоняющиеся от нуля : магистерская диссертация / Trigonometric and algebraic polynomials with several fixed higher harmonics that deviate least from zero

Рожин, А. А., Rozhin, A. A. January 2017 (has links)
Рассматривается задача о полиномах с фиксированными коэффициентами при старших гармониках, наименее уклоняющихся от нуля. В явном виде выписаны все тригонометрические полиномы с фиксированными коэффициентами при трех старших гармониках, наименее уклоняющиеся от нуля в интегральной норме, а также алгебраические многочлены с тремя фиксированными старшими коэффициентами, наименее уклоняющиеся от нуля в интегральной норме с весом Чебышева. / We consider the problem on polynomials with fixed higher coefficients that deviate least from zero. We find an explicit form for all trigonometric polynomials with fixed coefficients at three highest harmonics that deviate least from zero in the integral norm as well as algebraic polynomials with three fixed leading coefficients that deviate least from zero in the integral norm with the Chebyshev weight.
334

Symmetric Lorentzian polynomials / symmetriska lorentziska polynom

Qin, Daniel January 2023 (has links)
In 2020, Huh, Matherne, Mészáros, and St. Dizier established the Lorentzian property of normalized Schur polynomials and conjectured the Lorentzian nature of other Schur-type symmetric polynomials. More recently in 2022, Matherne, Morales, and Selover proved that chromatic symmetric functions of indifference graphs of abelian Dyck paths are Lorentzian. In this thesis, we study the more general class of Lorentzian polynomials that is also invariant under the standard permutation action on variables. Throughout this work, we give exposition to the classical theory of symmetric polynomials and Lorentzian polynomials. Then we present several fundamental results on symmetric Lorentzian polynomials and highlight potential avenues for future research. / År 2020 bevisade Huh-Matherne-Mészáros-St.Dizier att normaliserade schur polynom är lorentziska och antog att andra symmetriska polynom av Schur-typ också är det. År 2022 bevisade Matherne-Morales-Selover att kromatiska symmetriska funktioner för indifferensgrafer av abeliska Dyck-paths är lorentziska. Motiverade av dessa resultat studerar vi den mer allmänna klassen av lorentziska polynom som också är invarianta under standardpermutationsverkan på variabler. I avhandlingen ger vi några grundläggande resultat om symmetriska lorentziska polynom och pekar på möjliga framtida riktningar.
335

Sur les comportements locaux de polynômes et polynômes trigonométriques

Hachani, Mohamed Amine January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
336

Sur les comportements locaux de polynômes et polynômes trigonométriques

Hachani, Mohamed Amine January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
337

Limitantes para os zeros de polinômios gerados por uma relação de recorrência de três termos

Nunes, Josiani Batista [UNESP] 27 February 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-02-27Bitstream added on 2014-06-13T20:16:04Z : No. of bitstreams: 1 nunes_jb_me_sjrp.pdf: 1005590 bytes, checksum: 7da54a97a1f2ab452a315062071f2c4e (MD5) / Este trabalho trata do estudo da localização dos zeros dos polinômios gerados por uma determinada relação de recorrência de três termos. O objetivo principal é estudar limitantes, em termos dos coeficientes da relação de recorrência, para as regiões onde os zeros estão localizados. Os zeros são explorados atravé do problema de autovalor associado a uma matriz de Hessenberg. As aplicações são consideradas para polinômios de Szego fSng, alguns polinômios para- ortogonais ½Sn(z) + S¤n (z) 1 + Sn(0) ¾ e ½Sn(z) ¡ S¤n (z) 1 ¡ Sn+1(0) ¾, especialmente quando os coeficientes de reflexão são reais. Um outro caso especial considerado são os zeros do polinômio Pn(z) = n Xm=0 bmzm, onde os coeficientes bm; para m = 0; 1; : : : ; n, são complexos e diferentes de zeros. / In this work we studied the localization the zeros of polynomials generated by a certain three term recurrence relation. The main objective is to study bounds, in terms of the coe±cients of the recurrence relation, for the regions where the zeros are located. The zeros are explored through an eigenvalue representation associated with a Hessenberg matrix. Applications are considered to Szeg}o polynomials fSng, some para-orthogonal polyno- mials ½Sn(z) + S¤n (z) 1 + Sn(0) ¾and ½Sn(z) ¡ S¤n (z) 1 ¡ Sn+1(0) ¾, especially when the re°ection coe±cients are real. As another special case, the zeros of the polynomial Pn(z) = n Xm=0 bmzm, where the non-zero complex coe±cients bm for m = 0; 1; : : : ; n, were considered.
338

Limitantes para os zeros de polinômios gerados por uma relação de recorrência de três termos /

Nunes, Josiani Batista. January 2009 (has links)
Orientador: Eliana Xavier Linhares de Andrade / Banca: Alagacone Sri Ranga / Banca: Andre Piranhe da Silva / Resumo: Este trabalho trata do estudo da localização dos zeros dos polinômios gerados por uma determinada relação de recorrência de três termos. O objetivo principal é estudar limitantes, em termos dos coeficientes da relação de recorrência, para as regiões onde os zeros estão localizados. Os zeros são explorados atravé do problema de autovalor associado a uma matriz de Hessenberg. As aplicações são consideradas para polinômios de Szeg"o fSng, alguns polinômios para- ortogonais ½Sn(z) + S¤n (z) 1 + Sn(0) ¾ e ½Sn(z) ¡ S¤n (z) 1 ¡ Sn+1(0) ¾, especialmente quando os coeficientes de reflexão são reais. Um outro caso especial considerado são os zeros do polinômio Pn(z) = n Xm=0 bmzm, onde os coeficientes bm; para m = 0; 1; : : : ; n, são complexos e diferentes de zeros. / Abstract: In this work we studied the localization the zeros of polynomials generated by a certain three term recurrence relation. The main objective is to study bounds, in terms of the coe±cients of the recurrence relation, for the regions where the zeros are located. The zeros are explored through an eigenvalue representation associated with a Hessenberg matrix. Applications are considered to Szeg}o polynomials fSng, some para-orthogonal polyno- mials ½Sn(z) + S¤n (z) 1 + Sn(0) ¾and ½Sn(z) ¡ S¤n (z) 1 ¡ Sn+1(0) ¾, especially when the re°ection coe±cients are real. As another special case, the zeros of the polynomial Pn(z) = n Xm=0 bmzm, where the non-zero complex coe±cients bm for m = 0; 1; : : : ; n, were considered. / Mestre
339

An Algorithmic Characterization Of Polynomial Functions Over Zpn

Guha, Ashwin 02 1900 (has links) (PDF)
The problem of polynomial representability of functions is central to many branches of mathematics. If the underlying set is a finite field, every function can be represented as a polynomial. In this thesis we consider polynomial representability over a special class of finite rings, namely, Zpn, where p is a prime and n is a positive integer. This problem has been studied in literature and the two notable results were given by Carlitz(1965) and Kempner(1921).While the Kempner’s method enumerates the set of distinct polynomial functions, Carlitz provides a necessary and sufficient condition for a function to be polynomial using Taylor series. Further, these results are existential in nature. The aim of this thesis is to provide an algorithmic characterization, given a prime p and a positive integer n, to determine whether a given function over Zpn is polynomially representable or not. Note that one can give an exhaustive search algorithm using the previous results. Our characterization involves describing the set of polynomial functions over Zpn with a ‘suitable’ generating set. We make use of this result to give an non-exhaustive algorithm to determine whether a given function over Zpn is polynomial representable.nβ
340

VITERBI DECODER FOR NASA’S SPACE SHUTTLE’S TELEMETRY DATA

Mayer, Robert, McDaniels, James, Kalil, Lou F. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, California / In the event of a NASA Space Shuttle mission landing at the While Sands Missile Range, White Sands, New Mexico, a data communications system for processing Shuttle’s telemetry data has been installed there in the Master Control Telemetry Station, JIG-56. This data system required a Viterbi decoder since the Shuttle’s data is convolutionally encoded. However, the Shuttle uses a nonstandard code, and the manufacturer which in the past has provided decoders for Shuttle support, no longer produces them. Since no other company produced a Viterbi decoder designed to decode the shuttle’s data, it was necessary to develop the required decoder. The purpose of this paper is to describe the functional performance requirements and design of this decoder.

Page generated in 0.0364 seconds