1 |
Abacus-Tournament Models of Hall-Littlewood PolynomialsWills, Andrew Johan 08 January 2016 (has links)
In this dissertation, we introduce combinatorial interpretations for three types of HallLittlewood polynomials (denoted Rλ, Pλ, and Qλ) by using weighted combinatorial objects called abacus-tournaments. We then apply these models to give combinatorial proofs of properties of Hall-Littlewood polynomials. For example, we show why various specializations of Hall-Littlewood polynomials produce the Schur symmetric polynomials, the elementary symmetric polynomials, or the t-analogue of factorials. With the abacus-tournament model, we give a bijective proof of a Pieri rule for Hall-Littlewood polynomials that gives the Pλ-expansion of the product of a Hall-Littlewood polynomial Pµ with an elementary symmetric polynomial ek. We also give a bijective proof of certain cases of a second Pieri rule that gives the Pλ-expansion of the product of a Hall-Littlewood polynomial Pµ with another Hall-Littlewood polynomial Q(r) . In general, proofs using abacus-tournaments focus on canceling abacus-tournaments and then finding weight-preserving bijections between the sets of uncanceled abacus-tournaments. / Ph. D.
|
2 |
Symmetric Lorentzian polynomials / symmetriska lorentziska polynomQin, Daniel January 2023 (has links)
In 2020, Huh, Matherne, Mészáros, and St. Dizier established the Lorentzian property of normalized Schur polynomials and conjectured the Lorentzian nature of other Schur-type symmetric polynomials. More recently in 2022, Matherne, Morales, and Selover proved that chromatic symmetric functions of indifference graphs of abelian Dyck paths are Lorentzian. In this thesis, we study the more general class of Lorentzian polynomials that is also invariant under the standard permutation action on variables. Throughout this work, we give exposition to the classical theory of symmetric polynomials and Lorentzian polynomials. Then we present several fundamental results on symmetric Lorentzian polynomials and highlight potential avenues for future research. / År 2020 bevisade Huh-Matherne-Mészáros-St.Dizier att normaliserade schur polynom är lorentziska och antog att andra symmetriska polynom av Schur-typ också är det. År 2022 bevisade Matherne-Morales-Selover att kromatiska symmetriska funktioner för indifferensgrafer av abeliska Dyck-paths är lorentziska. Motiverade av dessa resultat studerar vi den mer allmänna klassen av lorentziska polynom som också är invarianta under standardpermutationsverkan på variabler. I avhandlingen ger vi några grundläggande resultat om symmetriska lorentziska polynom och pekar på möjliga framtida riktningar.
|
3 |
Semi-Regular Sequences over F2Molina Aristizabal, Sergio D. January 2015 (has links)
No description available.
|
4 |
Approche intégrabiliste des modèles de physique statistique hors d'équilibre / An integrabilist approach of out-of-equilibrium statistical physics modelsVanicat, Matthieu 30 June 2017 (has links)
Malgré son indéniable succès pour décrire les systèmes physiques à l'équilibre thermodynamique (grâce à la distribution de Boltzmann, reflétant la maximisation de l'entropie, et permettant la construction systématique de potentiels thermodynamiques), la physique statistique n'offre pas de cadre général pour étudier les phénomènes hors d'équilibre, i.e dans lesquels on observe un courant moyen non nul d'une grandeur physique (énergie, charge, particules...).L'objectif de la thèse est de décrire de tels systèmes à l'aide de modèles très simples mais qui retranscrivent néanmoins les principales caractéristiques physiques de ceux-ci. Ces modèles sont constitués de particules se déplacant de manière aléatoire sur un réseau unidimensionnel connecté à des réservoirs et soumises à un principe d'exclusion. L'enjeu est de calculer exactement l'état stationnaire du modèle, notamment le courant de particules, ses fluctuations et plus particulièrement sa fonction de grande déviation (qui pourrait jouer le rôle d'un potentiel thermodynamique hors d'équilibre).Une première partie de la thèse vise à construire des modèles dits intégrables, dans lesquels il est possible de mener à bien des calculs exacts de quantités physiques. De nouveaux modèles hors d'équilibre sont proposés grâce à la résolution dans des cas particuliers de l'équation de Yang-Baxter et de l'équation de réflexion. De nouvelles structures algébriques permettant la construction de ces solutions par une procédure de Baxtérisation sont introduites.Une deuxième partie de la thèse consiste à calculer exactement l'état stationnaire de tels modèles en utilisant l'ansatz matriciel. Les liens entre cette technique et l'intégrabilité du modèle ont été mis en lumière au travers de deux relations clef: la relation de Zamolodchikov-Faddeev et la relation de Ghoshal-Zamolodchikov. L'intégrabilité a aussi été exploitée au travers des equations de Knizhnik-Zamolodchikov quantiques, afin de calculer les fluctuations du courant, mettant en lumière des connexions avec la théorie despolynômes symétriques (polynômes de Koornwinder en particulier).Enfin une dernière partie de la thèse porte sur la limite hydrodynamique des modèles étudiés, i.e lorsque la maille du réseau tend vers zero et que le nombre de constituants du système tend vers l'infini. Les résultats exacts obtenus sur les modèles à taille finie ont permis de vérifier les prédictions de la théorie des fluctuations macroscopiques (concernant les fluctuations du courant et du profil de densité dans l'état stationnaire) et de l'étendre à des modèles comprenant plusieurs espèces de particules. / Although statistical physics has been very successful to describe physical systems at thermal equilibrium (thanks to the Boltzmann distribution, which reflects the maximization of the entropy, and allows one to construct in a systematic way thermodynamic potentials), it remains elusive to provide an efficient framework to study phenomena that are out-of-equilibrium, i.e displaying non vanishing current of physical quantities (energy, charge, particles...).The goal of the thesis is to describe such systems with very simple models which retain nevertheless their main physical features. The models consist in particles evolving randomly on a one dimensional lattice connected to reservoirs and subject to hard-core repulsion. The challenge lies in computing exactly the stationary state of the model, especially the particle current, its fluctuations and more precisely its large deviation function (which is expected to play the role of an out-of-equilibrium thermodynamic potential).In the first part of the thesis we construct models, called integrable, in which we can perform exact computations of physical quantities. We introduce several new out-of-equilibrium models that are obtained by solving, in specific cases, the Yang-Baxter equation and the reflection equation. We provide new algebraic structures which allow us to construct the solutions through a Baxterisation procedure.In the second part of the thesis we compute exactly the stationary state of these models using a matrix ansatz. We shed light on the connection between this technique and the integrability of the model by pointing out two key relations: the Zamolodchikov-Faddeev relation and the Ghoshal-Zamolodchikov relation. The integrability is also exploited, through the quantum Knizhnik-Zamolodchikov equations, to compute the fluctuations of the particles current, unrevealing connections with the theory of symmetric polynomials (the Koornwinder polynomials in particular).Finally the last part of the thesis deals with the hydrodynamic limit of the models, i.e when the lattice spacing tends to $0$ and the number of particles tends to infinity. The exact results obtained for a finite size system allow us to check the validity of the predictions of the macroscopic fluctuations theory (concerning the fluctuations of the current and the density profile in the stationary state) and to extend the theory to systems with several species of particles.
|
5 |
Des équations de contrainte en gravité modifiée : des théories de Lovelock à un nouveau problème de σk-Yamabe / On the constraint equations in modified gravityLachaume, Xavier 15 December 2017 (has links)
Cette thèse est consacrée au problème d’évolution des théories de gravité modifiée : après avoir rappelé ce qu’il en est pour la Relativité Générale (RG), nous exposons le formalisme n + 1 des théories ƒ(R), Brans-Dicke et tenseur-scalaire et redémontrons un résultat connu : le problème de Cauchy est bien posé pour ces théories, et les équations de contrainte se réduisent à celles de la RG avec un champ de matière. Puis nous effectuons la même décomposition n + 1 pour les théories de Lovelock et, ce qui est nouveau, ƒ(Lovelock). Nous étudions ensuite les équations de contrainte des théories de Lovelock et montrons qu’elles sont, dans le cas conformément plat et symétrique en temps, la prescription d’une somme de σk-courbures. Afin de résoudre cette équation de prescription, nous introduisons une nouvelle famille de polynômes semi-symétriques homogènes et développons des résultats de concavité pour ces polynômes. Nous énonçons une conjecture qui, si elle était avérée, nous permettrait de résoudre l’équation de prescription dans de nombreux cas : ∀ P;Q ∈ ℝ[X], avec deg P = deg Q = p, P et Q sont scindés => p ∑ k=0 P(k) Q(p-k) est scindé / This thesis is devoted to the evolution problem for modified gravity theories. After having explained this problem for General Relativity (GR), we present the n + 1 formalism for ƒ(R) theories, Brans-Dicke and scalar-tensor theories. We recall a known result: the Cauchy problem for these theories is well-posed, and the constraint equations are reduced to those of GR with a matter field. Then we proceed to the same n+1 decomposition for Lovelock and ƒ(Lovelock) theories, the latter being an original result. We show that in the locally conformally flat timesymmetric case, they can be written as the prescription of a sum of σk-curvatures. In order to solve the prescription equation, we introduce a new family of homogeneous semisymmetric polynomials and prove some concavity results for those polynomials. We express the following conjecture: if this is true, we are able to solve the prescription equation in many cases. ∀ P;Q ∈ ℝ[X], avec deg P = deg Q = p, P and Q are real-rooted => p ∑ k=0 P(k) Q(p-k) is real-rooted:
|
Page generated in 0.0891 seconds